
Inter-Block GPU Communication via
Fast Barrier Synchronization

Mohammad Hasanzadeh-Mofrad

University of Pittsburgh

September 12, 2017

1

CS 3580 - Advanced Topics in Parallel
Computing

General Purpose Graphics Processing Unit (GPGPU)

• Dedicated memory
• Graphics Double Data Rate (GDDR)

• Interface with the motherboard using:
• Peripheral Component Interconnect (PCI)
• PCI Express (PCIe)
• Accelerated Graphics Port (AGP)

• Application
• Parallel computing
• Virtual Realty
• Security
• Artificial Intelligence
• Machine Learning

2https://en.wikipedia.org/wiki/Graphics_processing_unit

War of Gods (among desktop GPUs)

• Nvidia Titan X1

• NVIDIA CUDA® Cores: 3840

• Clock: 1582 MHz

• Memory Speed: 11.4 GBps

• Memory Amount: 12 GB GDDR5X

• Memory Interface Width: 384-bit

• Memory Bandwidth: 547.7 GB/s

• Price: $1,200.00

• R9 Fury X2

• Stream Processor Units: 4096

• Clock Speed: 1050 MHz

• Memory Speed: 12.5 GBps

• Memory Amount: 4GB GDDR5

• Memory Interface Width: 350-bit

• Memory Bandwidth: 512 GB/S

• Price: $900.00

1. https://www.nvidia.com/en-us/geforce/products/10series/titan-x-pascal/
2. http://www.amd.com/en-us/products/graphics/desktop/r9 3

GPU architecture break down

• Thread-grade

• CUDA kernel grid

• CUDA thread block
• CUDA thread

• Core-grade

• CUDA-enabled GPU
• Texture Processing Cluster (TPC)

• Streaming Multiprocessor (SM)
• Streaming Processor (SP)

• Floating Point Unit (FPU)

http://docs.nvidia.com/cuda/cuda-c-programming-guide/ 4

Article information

Conference: 2010 IEEE International Symposium on Parallel & Distributed
Processing (IPDPS)

h5-index: 43

Title: Inter-block GPU communication via fast barrier synchronization

Authors: Shucai Xiao and Wu-chun Feng

Affiliation: Virginia Tech

Citation (as of September 2017): 213

https://scholar.google.com/citations?view_op=top_venues 5

Gist of the idea

• GPUs suits well on parallel application with minimal inter-block communication
because there is not any inter-block communication on the GPU itself.

• Inter-block communication is necessary when multiple thread blocks require to
communicate with each other.

• It is implemented using global memory and barrier synchronization across blocks
which is called CPU synchronization.

• Currently this process is only available via CPU which incur significant overhead.

• Since GPUs lack explicit support for inter-block communication, Shucai Xiao and
Wu-chun Feng propose two approaches:
• GPU lock-based synchronization

• GPU lock-free synchronization

6Shucai Xiao and Wu-chun Feng. "Inter-block GPU communication via fast barrier synchronization." IPDPS, 2010.

Raise an objection

• “Today, improving the computational capability of a processor comes from
increasing its number of processing cores rather than increasing its clock
speed.”

• I’m afraid the above statement is false because
• Intel Nehalem microarchitecture-based (1st generation)

• Intel Core i7 – Extreme Edition comes with
• 6 cores
• 3.2 GHz clock rate
• in January 2010

• Intel Kaby Lake microarchitecture (7th generation)
• Intel Core i7 – Performance comes with

• 4/8 cores/threads
• 4.4 GHz clock rate
• in January 2017

1. https://en.wikipedia.org/wiki/Intel_Core 7

Kernel execution time on the GPU1

• Kernel execution time consist of three phases
1. Kernel launch to the GPU (tO)
2. Computation on the GPU (tC)
3. Inter-block GPU communication via barrier synchronization (tS)

• where for M kernel launches

T = ෍

𝑖=1

𝑀

(𝑡𝑂
𝑖 + 𝑡𝐶

𝑖 + 𝑡𝑆
𝑖)

• Factors contribute to these three time components
1. tO: Data transfer rate, Kernel code size.
2. tC: memory access method, thread organization.
3. tS: Synchronization parameters.

1. Shucai Xiao and Wu-chun Feng. "Inter-block GPU communication via fast barrier synchronization." IPDPS, 2010. 8

So, what’s the incentive?

• Result for the percentage of time spend on inter-block communication for
three benchmarks is

• Incentive: In contrast to previous work which focuses on optimizing GPU
computation (phase 2), the authors focus on GPU synchronization (phase 3).

Shucai Xiao and Wu-chun Feng. "Inter-block GPU communication via fast barrier synchronization." IPDPS, 2010.
*Smith-Waterman Algorithm (SWat) 9

FFT SWat* Bitonic Sort

17.8% 49.2% 59.6%

CUDA Synchronization1

• __syncthreads()2 method is a block level synchronization barrier
implemented in CUDA programming model which enables intra-block
communication via shared memory or global memory.

• However, there is no explicit support for communication across different
blocks i.e. inter-block communication in CUDA programming model.

• Thus, __syncthreads() synchronize threads across blocks and not the grid.

• Again reaching the same incentive for synchronizing M kernel launches:

1. Shucai Xiao and Wu-chun Feng. "Inter-block GPU communication via fast barrier synchronization." IPDPS, 2010.
2. Feng, Wu-chun, and Shucai Xiao. “To GPU synchronize or not GPU synchronize?." ISCAS, 2010. 10

Kernel launch tO
1 Computation tC

1 Synchronization tS
1 Kernel launch tO

2 Computation tC
2 Synchronization tS

2 ……

Explicit/Implicit Synchronization1

• CPU explicit synchronization using
cudaThreadSynchronize()2

T = ෍

𝑖=1

𝑀

(𝑡𝑂
𝑖 + 𝑡𝐶

𝑖 + 𝑡𝑆
𝑖)

• CPU implicit synchronization without
cudaThreadSynchronize()2

T = 𝑡𝑂
1 +෍

𝑖=1

𝑀

(𝑡𝐶
𝑖 + 𝑡𝐶𝐼𝑆

𝑖)

• Multiple kernel launches, time can be
overlapped by previous kernels.

1. Shucai Xiao and Wu-chun Feng. "Inter-block GPU communication via fast barrier synchronization." IPDPS, 2010.
2. http://docs.nvidia.com/cuda/cuda-runtime-api/index.html 11

for()
{

__kernel_func<<<grid, block>>>();
cudaThreadSynchronize();

}

for()
{

__kernel_func<<<grid, block>>>();
// Without cudaThreadSynchronize();

}

GPU Synchronization

• In GPU synchronization, a kernel is launched only once.

• Instead of relaunching a kernel, a barrier function __gpu_sync() is called.

• Here, the __device_func() implements the behavior of __kernel_func(), but it
is a device function instead of a global function. So, it is called on the device
rather than the host.

Shucai Xiao and Wu-chun Feng. "Inter-block GPU communication via fast barrier synchronization." IPDPS, 2010. 12

__global__ void __kernel_func1()
{

for()
{

__device_func();
__gpu_sync();

}
}

GPU Synchronization Time

• The kernel execution time in the GPU synchronization is

T = 𝑡𝑂 +෍

𝑖=1

𝑀

(𝑡𝐶
𝑖 + 𝑡𝐺𝑆

𝑖)

• where M is number of barriers needed for the kernel execution, tO is the
kernel launch time, ti

C is the computation time, and ti
GS is the synchronization

time.

Shucai Xiao and Wu-chun Feng. "Inter-block GPU communication via fast barrier synchronization." IPDPS, 2010. 13

Amdahl’s law

• A program can be split in two parts:
• parallelizable part p
• Non-parallelizable part 1 – p

• Thus, total execution time is:
T = (1 - p) + p

• According to Amdahl’s law:

𝑆𝑇 𝑁 =
1

1 − 𝑝 +
𝑝
𝑁

• ST is the execution speed up

• N is the number threads (cores)

• p is the parallelizable percentage of the program

https://en.wikipedia.org/wiki/Amdahl%27s_law 14

How to calculate Computation speedup?

• Kernel execution time for GPU synchronization

T = 𝑡𝑂 +෍

𝑖=1

𝑀

(𝑡𝐶
𝑖 + 𝑡𝑆

𝑖) |𝑡𝑆
𝑖 = 𝑡𝐺𝑆

𝑖

• Ignore the kernel launch time

T =෍

𝑖=1

𝑀

(𝑡𝐶
𝑖 + 𝑡𝑆

𝑖)

• Expanding the sum over i and absorbing M
T = 𝑀(𝑡𝐶 + 𝑡𝑆) = 𝑀𝑡𝐶 +𝑀𝑡𝑆

𝑇 = 𝑡𝐶 + 𝑡𝑆

Shucai Xiao and Wu-chun Feng. "Inter-block GPU communication via fast barrier synchronization." IPDPS, 2010. 15

How to calculate Computation speedup?
• Thus, the computation time is

𝑇 = 𝑡𝐶 + 𝑡𝑆 → 𝑡𝐶 = 𝑇 − 𝑡𝑆
• Which is the percentage of computation time tC in the total kernel execution time T.

• So, if only computation is accelerated:

𝑆𝑇 =
1

1 −
𝑡𝐶
𝑇

+

𝑡𝐶
𝑇
𝑆𝐶

• If we consider the computation as the parallel percentage, then

𝑝 =
𝑡𝐶
𝑇

• Thus

𝑆𝑇 =
1

1 − 𝑝 +
𝑝
𝑆𝐶

• ST is the kernel execution speedup gained by reducing the computation time

• SC is the computation speed up.

Shucai Xiao and Wu-chun Feng. "Inter-block GPU communication via fast barrier synchronization." IPDPS, 2010. 16

Amdahl’s law – What if …?

• What if we try to gain speedup by parallelizing the non-parallelizable part?

• A program can be split in two parts:
• parallelizable part p
• Non-parallelizable part 1 – p

• But now
• parallelizable part p Non-parallelizable part (1 – p)
• Non-parallelizable part 1 – p  parallelizable part 1 – (1 – p) = p

• Thus

𝑆𝑇 𝑁 =
1

𝑝 +
(1 − 𝑝)
𝑁

• ST is the execution speed up

• N is the number threads (cores)

• p is the parallelizable percentage of the program

https://en.wikipedia.org/wiki/Amdahl%27s_law 17

How to calculate GPU synchronization speedup?

• So, if the synchronization time is reduced, according to Amdahl’s law, the
maximum kernel execution speedup is constrained by

𝑆𝑇 =
1

𝑡𝐶
𝑇

+
(1 −

𝑡𝐶
𝑇
)

𝑆𝑆

=
1

𝑝 +
(1 − 𝑝)
𝑆𝑆

• Where ST is the kernel execution speedup gained by reducing the
synchronization time

• 𝑝 =
𝑡𝐶

𝑇
is the percentage of the computation time tC in the total kernel

execution time T

• 𝑡𝑆 = 𝑇 − 𝑡𝐶 synchronization time of the CPU

Shucai Xiao and Wu-chun Feng. "Inter-block GPU communication via fast barrier synchronization." IPDPS, 2010. 18

Possible maximum accelerated speedup

• Computation speedup

𝑆𝑇 =
1

1 − 𝑝 +
𝑝
𝑆𝐶

𝑝 =
𝑡𝐶
𝑇
; 𝑡𝐶 = 𝑇 − 𝑡𝑆

• The larger the p is, the more
speedup can be gained with a
fixed SC

• Synchronization speedup

𝑆𝑇 =
1

𝑝 +
(1 − 𝑝)
𝑆𝑆

𝑝 =
𝑡𝐶
𝑇
; 𝑡𝑆 = 𝑇 − 𝑡𝐶

• The smaller the p is, the more
speedup can be gained with a
fixed SS

Shucai Xiao and Wu-chun Feng. "Inter-block GPU communication via fast barrier synchronization." IPDPS, 2010. 19

Algorithm FFT SWat Bitonic Sort

p 0.82 0.51 0.40

Possible Max Speedup with only computation accelerated 5.61 2.03 1.68

GPU Synchronization strategies

1. GPU lock-based synchronization
• A mutex + a CUDA atomic operation

2. GPU lock-free synchronization
• A lock-free algorithm

Shucai Xiao and Wu-chun Feng. "Inter-block GPU communication via fast barrier synchronization." IPDPS, 2010. 21

GPU lock-based Synchronization

• Implementing barrier function
__gpu_sync()

1. After a block completes its
computation

2. One of its threads (leading thread)
will increment g_mutex

3. And compare g_mutex to goalVal

4. If g_mutex is equal to goalVal, the
synchronization is completed and
each thread block can proceed to
the next stage of computation

Shucai Xiao and Wu-chun Feng. "Inter-block GPU communication via fast barrier synchronization." IPDPS, 2010. 22

__device__ volatile int g_mutex; //the mutex variable
//GPU lock-based synchronization function
__device__ void __gpu_sync(int goalVal){

//thread ID in a block
int tid_in_block = threadIdx.x * blockDim.y + threadIdx.y;
// only thread 0 is used for synchronization
if (tid_in_block == 0){

atomicAdd((int *)&g_mutex, 1);
//only when all blocks add 1 to g_mutex
//will g_mutex equal to goalVal
while(g_mutex != goalVal){

//Do nothing here
}

}
__syncthreads();

}

1

2

3

4

GPU lock-based Synchronization

• __gpu_sync() execution time consists of
1. Atomic addition of g_mutex which can be only executed sequentially by different

blocks ta
2. Busy waiting for g_mutex checking which can be executed in parallel tc
3. Synchronization of threads within a block via __synchthreads() which also cane be

executed in parallel ts

• Thus for N blocks

tGBS = N * ta + tc + ts

Shucai Xiao and Wu-chun Feng. "Inter-block GPU communication via fast barrier synchronization." IPDPS, 2010. 23

GPU Synchronization strategies

1. GPU lock-based synchronization
• A mutex + a CUDA atomic operation

2. GPU lock-free synchronization
• A lock-free algorithm

Shucai Xiao and Wu-chun Feng. "Inter-block GPU communication via fast barrier synchronization." IPDPS, 2010. 24

GPU Lock-free Synchronization

• The atomic add operation of lock-based synchronization on g_mutex is a
performance bottleneck because it is executed sequentially by each thread
block.

• In lock-free synchronization, there is no atomic operation and all the
operations can be executed in parallel.

• Synchronization of different thread blocks is controlled by threads in a single
block, which can be synchronized by calling _synchthreads().

• The lock-free synchronization strategy uses two arrays Arrayin and Arrayout
to coordinate the synchronization requests from various blocks where thread
block i is mapped to the ith element.

Shucai Xiao and Wu-chun Feng. "Inter-block GPU communication via fast barrier synchronization." IPDPS, 2010. 25

GPU Lock-free Synchronization (algorithm)

1. When the ith block is ready for
communication

1.1 Its leading thread sets the ith
element of Arrayin to goalVal

1.2 busy wait on ith element of
Arrayout to be set to goalVal.

Shucai Xiao and Wu-chun Feng. "Inter-block GPU communication via fast barrier synchronization." IPDPS, 2010. 26

//GPU lock-free synchronization function
__device__ void __gpu_sync(int goalVal, volatile int *Arrayin, volatile int *Arrayout){

// thread ID in a block
int tid_in_blk = threadIdx.x * blockDim.y+ threadIdx.y;
int nBlockNum = gridDim.x * gridDim.y;
int bid = blockIdx.x * gridDim.y + blockIdx.y;
// only thread 0 is used for synchronization
if (tid_in_blk == 0) {

Arrayin[bid] = goalVal;
}
if (bid == 1) {

if (tid_in_blk < nBlockNum) {
while (Arrayin[tid_in_blk] != goalVal){

//Do nothing here
}

}
__syncthreads();
if (tid_in_blk < nBlockNum) {

Arrayout[tid_in_blk] = goalVal;
}

}
if (tid_in_blk == 0) {

while (Arrayout[bid] != goalVal) {
//Do nothing here

}
}
__syncthreads();

}

1.1

1.2

GPU Lock-free Synchronization (algorithm)

2. In parallel

2.1. the first N threads in block 1
repeatedly check if all elements in
Arrayin are equal to golaVal, with ith
of 1st block checking ith element of
Arrayin.

2.2 After all elements in Arrayin are
set to goalVal

2.3 The __synchreads() is called

2.4 Each checking thread i sets the
ith element of Arrayout to goalVal.

Shucai Xiao and Wu-chun Feng. "Inter-block GPU communication via fast barrier synchronization." IPDPS, 2010. 27

//GPU lock-free synchronization function
__device__ void __gpu_sync(int goalVal, volatile int *Arrayin, volatile int *Arrayout){

// thread ID in a block
int tid_in_blk = threadIdx.x * blockDim.y+ threadIdx.y;
int nBlockNum = gridDim.x * gridDim.y;
int bid = blockIdx.x * gridDim.y + blockIdx.y;
// only thread 0 is used for synchronization
if (tid_in_blk == 0) {

Arrayin[bid] = goalVal;
}
if (bid == 1) {

if (tid_in_blk < nBlockNum) {
while (Arrayin[tid_in_blk] != goalVal){

//Do nothing here
}

}
__syncthreads();
if (tid_in_blk < nBlockNum) {

Arrayout[tid_in_blk] = goalVal;
}

}
if (tid_in_blk == 0) {

while (Arrayout[bid] != goalVal) {
//Do nothing here

}
}
__syncthreads();

}

2.1

2.2

2.3

2.4

GPU Lock-free Synchronization (algorithm)

3. ith block will continue execution

3.1 once its leading thread sees the
ith element of Arrayout is set to
goalVal.

Shucai Xiao and Wu-chun Feng. "Inter-block GPU communication via fast barrier synchronization." IPDPS, 2010. 28

//GPU lock-free synchronization function
__device__ void __gpu_sync(int goalVal, volatile int *Arrayin, volatile int *Arrayout){

// thread ID in a block
int tid_in_blk = threadIdx.x * blockDim.y+ threadIdx.y;
int nBlockNum = gridDim.x * gridDim.y;
int bid = blockIdx.x * gridDim.y + blockIdx.y;
// only thread 0 is used for synchronization
if (tid_in_blk == 0) {

Arrayin[bid] = goalVal;
}
if (bid == 1) {

if (tid_in_blk < nBlockNum) {
while (Arrayin[tid_in_blk] != goalVal){

//Do nothing here
}

}
__syncthreads();
if (tid_in_blk < nBlockNum) {

Arrayout[tid_in_blk] = goalVal;
}

}
if (tid_in_blk == 0) {

while (Arrayout[bid] != goalVal) {
//Do nothing here

}
}
__syncthreads();

}

3.1

GPU Lock-free Synchronization

• Execution time of __gpu_sync() is

tGFS = tSI + tCI + 2ts + tSO + tCO

• tSI, time for setting an element in Arrayin

• tCI, time for checking an element in Arrayin

• ts, time for intra-block synchronization

• tSO, time for setting an element in Arrayout

• tCO, time for checking an element in Arrayout

• Note: Kernel execution time is not a function of number of blocks N

Shucai Xiao and Wu-chun Feng. "Inter-block GPU communication via fast barrier synchronization." IPDPS, 2010. 29

Execution time of the micro-benchmark

• Micro-benchmark: Compute the
mean of two floats for 10,000 times

• CPU explicit synchronization launch
a new kernel for each block

• CPU implicit synchronization
overlaps the time for kernel
launches and pipeline the
computation

• GPU lock-based synchronization
time is a function a number of
blocks in a kernel

• GPU lock-free synchronization does
not have an atomic operation and
can be executed in parallel which
makes the synchronization time
almost a constant value

Shucai Xiao and Wu-chun Feng. "Inter-block GPU communication via fast barrier synchronization." IPDPS, 2010. 30

Results: Kernel Execution Time

• Test algorithms: FFT, SWat, and Bitonic sort.

• Increasing the number of thread blocks in the kernel, the execution time will
be decreased.
• More resources, more acceleration

• Performance improvement can be seen in all three test algorithms for GPU
synchronization strategies with less execution time.

Shucai Xiao and Wu-chun Feng. "Inter-block GPU communication via fast barrier synchronization." IPDPS, 2010. 31

Results: Execution Time Speedup

• Gained speedup compare to the sequential implementation of test
algorithms.

Shucai Xiao and Wu-chun Feng. "Inter-block GPU communication via fast barrier synchronization." IPDPS, 2010. 32

Algorithm FFT SWat Bitonic sort

Implicit CPU synchronization 62.50 9.53 14.40

GPU lock-based synchronization 67.14 10.89 17.27

GPU lock-free synchronization 69.93 12.93 24.02

Results: Synchronization Time

• Roughly, when more blocks configured in the kernel, a little more time is
needed for synchronization.

• GPU synchronization strategies are taking less synchronization time compare
to implicit CPU synchronization.

Shucai Xiao and Wu-chun Feng. "Inter-block GPU communication via fast barrier synchronization." IPDPS, 2010. 33

Percentage of Computation Time and Synchronization
Time
• Performance breakdown in percentage of the three test algorithms for

different synchronization approaches.

• GPU-based strategies has less synchronization time.

Shucai Xiao and Wu-chun Feng. "Inter-block GPU communication via fast barrier synchronization." IPDPS, 2010. 34

Conclusion

• The literature focuses on optimizing the computation time rather than
synchronization time.

• A performance model is proposed:
• Kernel launch time

• Kernel execution time

• Kernel synchronization time

• Two approaches for inter-block communication on GPUs are proposed
• Lock-based GPU synchronization: Mutex + CUDA atomic operation

• Lock-free GPU synchronization: Two synchronization arrays

• Results show that proposed GPU synchronization approaches obtained better
performance in all test algorithms compare to CPU barrier synchronization.

Shucai Xiao and Wu-chun Feng. "Inter-block GPU communication via fast barrier synchronization." IPDPS, 2010. 35

