s and Methods for Exascale Graph
Analytics

presented by Mohammad Mofrad
University of Pittsburgh

April 27, 2018

Comprehensive exam committee
Professor Rami Melhem, computer Science Department, University of PittsbuT8
Professor Alex Labrinidis, Computer Science Department, University of Pittsburgh

Professor Jack Lange, Computer Science Department, University of Pittsburgh

Discussion Outline

Graph Partitioning

rchitecture-aware and streaming

Cloud- based Graph Analytlcs Platforms
HPC-based Graph Analytics Platforms

4=

Graph Partitioning Goals and Metrics

 Partitioning s
« Random or Hash-based partitioning have ° k'Way balanced partltlonlng
extremely poor locality and cut-edge Of G = (V E)
» Work balance ’ .
« When: partition = Node in the cluster * |E[/k.(1+¢)ie.e>0
« Scalability limitation for high degree vertices . |V| | k (1 + 8) ie.e>0
 Symmetric computation at vertices ' o
- Computation Partitioning criteria:

» Exploiting higher parallelism

- Distributing computation * Edge cut
 Edges or vertices e \ertex cut }b
- Communication /P) ‘\Q/.
« Communication asymmetry '
« Storage @ a -?-e. O Q ®

» Aggregating storage mediums across machines

» Exceeding memory capacity Edoe Cut Vertex Cut
g U

J. E. Gonzalez, et al. "PowerGraph: Distributed graph-parallel computation on natural graphs." OSDI, 2012.

Discussion Outline

Graph Partitioning
- Architecture-aware (Aragon, Paragon, Planar and
Argo)

Vertex-centric

Streaming
Cloud-based Graph Analytics Platforms
HPC-based Graph Analytics Platforms

Architecture Aware Graph Partitioning

 Non-uniform Inter-node Migration cost
communication . Among nodes

« Communication cost among nodes _
* Because of network interconnect

* Non-uniform Intra-node
communication * Among cores

» Cache hierarchy among cores * Because of memory hierarchy

GOAL.: (Re)balance the load across nodes while minimizing inter-node communication and migration cost (not just edge-cut)

[N [No [s |
N 1 6
/e N, (T I
P1(N1) Z
P'v';g §) 1
Figure 6: Relative Network
Figure 3: Old Decomposition Figure 4: Better Decomposition Figure 5: Best Decomposition Communication Costs

Lower cut-edge Better communication

A. Zheng, et al. “Architecture-Aware Graph Repartitioning for Data-Intensive Scientific Computing.” Big Data, 2014.

Architecture Aware Graph Partitioning

* Problem Statement: Let G = (V, E)

P={PF,:U'P,=V and P,N P; = ¢ for any i # j} Anunbalanced partitioning of G

» Balance the load _
S
_ n p w(P) is the aggregated _
H,r[:ﬂ:]- < (]_ + E} kW W = 2j=1 w(F;) weight of vertices (1+¢) *u'_
n gis the imbalanced ratio

 Minimize the communication cost
a is the #steps

~omm(G. P') =)(e) * c(P!, P!
comm(G, P') = a» e={§:}é£ w(e) x (P, Fy) w(e) is the edge weight
and u€ P! and v€ P} and i#j c(P’, P’;) is the communication cost
* Minimize the migration cost
mig(G, P, P') = Z vs(v) * c(P,, Pl) vs(v) is the vertex size

- .
vEP; and vEP! and ij c(P;, P”) is the migration cost

A. Zheng, et al. “Architecture-Aware Graph Repartitioning for Data-Intensive Scientific Computing.“ Big Data, 2014.

Aragon: Two Phase Partitioning

e 1. Cluster, 2. Cores

* Inter-node partitioning (Comparison)
« TopoFM: (2 partitions + communication cost) = Repartition

* Process a single vertex per iteration!
 Topology aware Gain computation g(v)

* P; and P; partitions are placed in N; and N; nodes with v e P;
« Greedy gain function

gsra(v) = a (&, (v) — di ,(v)) * d(]N;, Nj) Gtopo(V) = ax Z w(e)*(d(N;, Ni)—d(N;, Ny))
e=(v,u)EE and veEPF; and u€ Py, and ki and k]
d: . (v) = w(e) o
L e=w..uJEEarEea and ue P, Imig(v) = vs(v) * (d(Ni, Ni) — d(N;, Ni))
dl,,(v) = > w(e) 9(v) = gstd(V) + Gtopo(V) + Gmig(v)

e=(v,u)EE and vEF; and u€P; and i#j

A. Zheng, et al. “Architecture-Aware Graph Repartitioning for Data-Intensive Scientific Computing.” Big Data, 2014.

Aragon: Two Phase Partitioning

Node:

« 1. Cluster, 2. Cores -
« Intra-node partitioning Tree Communication cost caches
—
« HierCacheLB (Partition hierarchically) w (O OO OOOG
» FlatCacheL B (partition entirely and then assign) Fig. 5: Topology Tree

« Advantages
 Consider both network topology and system architecture at the same time
« Most works that | read consider communication is cheap

» Drawbacks
« Memory hug
 Uniform hardware layout
 Can only refine one partition at a time, so it is a sequential algorithm

A. Zheng, et al. “Architecture-Aware Graph Repartitioning for Data-Intensive Scientific Computing.“ Big Data, 2014.
s

10N

[he Curse of Content

Argo

Socket 0 Socket 1 Socket 0 Socket 1
core core core core core core core core core core core core core core core core
(w1 | w1 | v | e) (v o v e) w | o | o | o] [L1 || 1 || vt || 1 |
X L2 L2 L2 L2 I [L2 | L2 | I | L2 || | L2 |
FSB Interface FSB Interface FSB Interface FSB Interface | L3 | | L3 |
; ¢ t I QPIHT|
FSB ‘ k FSB Memory Inter-socket Inter-socket Memory
X ~F _ 1; Controller Link Controller Link Controller Controller
Memory Controller) T T
{Hnrthbndge} + Iy
X Y Memory Memory
| Memory |

(a) Uniform Memory Access (UMA) Node

(b) Nonuniform Memory Access (NUMA) Node

Data communication among cores is done via shared memory which is a source of contention

~ Sending Host

Recewlng Host

Memory |Chip5et| |

| Memory I‘thpset I | CPU

CPU]

Ch1TXRXPrs
Ch 2 TX/RX Prs

Ch3TXRXPrs
Ch 4 TX/RX Prs

4x Infiniband

Fig. 2: Memory transactions of inter-node data communica-

tion via RDMA [14]

Zero-copy without involvement

A. Zheng, et al. “Argo: Architecture-aware graph partitioning.” Big Data, 2016.

Bandwidth (GB/s)

40
35
30
25
20

41:.

1x |
lxl

QDR

InfiniBand

15
10 I I
5
ﬂ .
¥ &

FDR-10

lxl

FDR

ax 1N

Dual 4x _

12x I
1x B
a
1333 [N
1500 N
1z66 [
2133 1N

EDR

DDR3

Memory

Fig. 3: Theoretic bandwidth for different InfiniBand and
memory technologies (Binnig et. al. [9].)

Argo: Graph Partitioning Model

 Derived from linear deterministic greedy algorithm |a- 2200 S= we

* A streaming partitioning algorithm ij e e j*{“ ; .
* Argo (with heterogeneity awareness) commw. P11 YT emy
comm(v, P;) = s Eépj o w(e) * c(P;, Pj)
» Contention awareness c(Pi, Pj) = c¢(P;, Pj) + A % (51 + s2)

* Penalize intra-node communication by offloading a certain amount of intra-
node communication across compute nodes

* 5, and s, are inter-node and inter-socket communication costs

* A € [0, 1] controls the communication & contention heterogeneity
* A =0 only communication; A =1 only contention; € (0, 1] both

A. Zheng, et al. “Argo: Architecture-aware graph partitioning.” Big Data, 2016.

Aragon, Paragon, Planar, and Argo Comparison

II—

Architecture-aware Yes

Algorithm Sequential
Runtime Heavyweight
Incremental No

Partitioning Space All

Balanced partitions Edge weights
Migration decision Deterministic
Speed Slow
Resource Contention No

Yes

Parallel
Lightweight

No

Boundary vertices
Edge weights
Deterministic
Decent

Yes

Yes

Parallel & Adaptive
Lightweight

Yes

Boundary vertices

Edge weights

Probabilistic (p e [0, max]
Fast

Yes

A. Zheng, et al. “Architecture-Aware Graph Repartitioning for Data-Intensive Scientific Computing.” Big Data, 2014.
A. Zheng, et al. “Paragon: Parallel Architecture-Aware Graph Partition Refinement Algorithm .“ EDBT, 2016.

A. Zheng, et al. “Planar: Parallel Lightweight Architecture-Aware Adaptive Graph Repartitioning.“ ICDE, 2016.

B. A. Zheng, et al. “Argo: Architecture-aware graph partitioning.” Big Data, 2016.

Yes

Parallel
Lightweight
No

All

Edge weights
Greedy

Fast

Yes

Discussion Outline

Graph Partitioning

Architecture-aware
Vertex-centric (SPINNEr and Ja-Be-Ja)

Streaming (Fennel)

Cloud-based Graph Analytics Platforms
HPC-based Graph Analytics Platforms

Spinner: Balanced k-way label propagation

w(u,v)6(oe(u).l)

score(v,l) = 5o score'(v,l) = Z w(u,v)d(oe(u),l) score” (v,l) = (1)
ueéu | ueN(v) . H.E;(v) Yuen(v) wlu,v)
l, = argmax score(v,[) w(i,) = {1, if (u,v) €D®(v,u) €D 7(l) = Z deg(v)é(a(v),l) ¢ =,. IE]
I ’ 2, if (u,v) € DA(v,u) €D C veG k
. . .~ 1 2.0 5.0
« Migration decisions las_
0.8f 18 [, %
."(f:} I = (d 0.6} A 1.6 -3.5E
p= i r(f:]n = — f_}l{f:]n m(l) = Z eg(v) s —e o 3.0
H’I() veM(l) 0.4 ~— score(G) 114 -2.5%
.] 12.05
* Evaluation metrics 2 2 lisB
0.0 : : : : - ' —11.0 ‘1.0
_ #local edges maximum load 0 5 10 lsité?gtigﬁ 30 35 40
k fig. 3. Partitioning of the Yahoo! web graph across 115 partitions. The figure

C. Martella, et al. "Spinner: Scalable graph partitioning in the cloud." ICDE, 2017. hows the evolution of metrics ¢, p, and score(G) across jterations.

Ja-Be-Ja

 Balanced k-way graph partitioning ey 0 g
e Partitioning G = (V, E) Into k equal -sized partitions W|th an offset g
e Partition function =: V = {1, ..., k} where z(p) shows the partition of vertex

* Ny(€) ={q € N, : m(q) = c} I.e. x,(c) = [N,(c)| Is the number of neighbors of with
partltlon c and x is the number of nelghbormg nodes

* Energy of the graph E(G, m) =% 2, v (X, — X,(7,))
« 7* =argmin_E(G, n) s.t. |[V(c,)| = |V(cz)|, v cl, c, € {l,...,k}
* IDEA: Initialize partitions at random and apply a local search heuristic
towards lower energy state (min-cut)
 Energy of the system is defined as the number of nodes with different colors
 Energy of a node is defined as the number of its neighbors with different partitions

F. Rahimian, et al. "Ja-be-ja: A distributed algorithm for balanced graph partitioning.” SASO, 2013.
S

Fennel: Streaming k-way graph partitioning

 Streaming partitioning == One pass partitioning
* In streaming graph partitioning vertices are arrived and the decision of
placement has to be done on-the-fly e g each parcition

e e e e e e e holds ©(n/k)

* IDEA: Greedy scheme araph stream - S~ = vertices

« Send vertex v to partition that maximizes pariionet
* P=(S,, ..., S,) where S is a subset of V vertices set

* e(S, V\) is the cut-edge across the cut (S, V \ S) Edges Veritel

 Edge cardinality |e(S;, S;)| (both ends)

C. Tsourakakis, et al. "Fennel: Streaming graph partitioning for massive scale graphs.” WSDM, 2014.

Spinner, Ja-Be-Ja, Argo and Fennel

Comparison

* Spinner
* Cloud (Giraph)
 \ertex-centric
« Balanced (edge)
 Undirected graphs

* Arbitrary partition
sizes (Capacity)

» Edge-cut

 Label propagation

e Ja-Be-Ja

Theoretic
\ertex-centric
Balanced (edge)
Weighted graphs
Arbitrary partition
sizes (Initialization)
Edge-cut

L ocal search

* Argo

HPC (MPI)
(Vertex-centric)
Balanced (weights)
Weighted graphs

Arbitrary partition
sizes (Quota)

Resource contention

Linear deterministic
greedy

* Fennel
» Big Data
* (\ertex-centric)
 Balanced (relaxation)
 Undirected graphs

 Arbitrary partition
sizes (\Gamma)

« Edge-cut
» Greedy scheme

Fennel: Comparison with Spinner & Metis

* \WWhat is the difference between Fennel and others?

Twitter k=2 Twitter k=4 Twitter k=8 Twitter k=16 Twitter k=32
Approach 0 p ¢ p ¢ p ¢ p ¢ p
Wang et al. [33] 0.61 1.30 0.36 1.63 0.23 2.19 0.15 2.63 0.11 1.87
Stanton et al. [29] .66 1.04 0.45 1.07 0.34 1.10 0.24 1.13 0.20 1.15
Fennel [30] .93 1.10 0.71 1.10 0.52 1.10 0.41 1.10 .33 1.10
Metis [18] (.88 1.02 0.76 1.03 0.64 1.03 0.46 1.03 0.37 1.03
Spinner .85 1.05 0.69 1.02 0.51 1.05 .39 1.04 0.31 1.04

_ # local edges _ maximum load

]| p= B]
k

C. Tsourakakis, et al. "Fennel: Streaming graph partitioning for massive scale graphs.” WSDM, 2014.

Discussion Outline

Graph Partltlonlng

rchitecture-aware and streamin

Cloud-based Graph
Analytics Platforms

. Vertex-centric (GraphLab, Distributed GraphlLab and
PowerGraph)

* Linear algebra

HPC-based Graph Analytics Platforms

Pregel: A Legacy Graph Processing Platform

» Bulk Synchrnous Processing (BSP)

e Super-step

* \ertex centric N
e Combiners (Aggregators)

* What makes a graph processing engine?
« A sequential code that Is executed concurrently on all vertices/edges.

* The engine itself which is iteratively process the graph by running the
vertices/edges code

* Pregel and its open-source implementation Giraph | | | | | | |

e _
Synchronisation

G. Malewicz, et al. "Pregel: a system for large-scale graph processing." International Conference on Management of data, 2010.

10 ", Sync. (Pragel)

GraphLab: Machine Learning and Data © >~
Mining (MLDM) algorithm properties g

(a) Async vs Sync PageRank

« MapReduce limitations: N r———
 MapReduce fails when there Is computational dependencies EIE?
« MapReduce imposes a massive amount of 1/O for iterative computations 8
» MapReduce does not support iterative workflow j SN
 MLDM requirments) Dy Puseiank
1. MLDM algorithms have graph structured computation (Dependent e
CO m p u tat I O n) E[’: é-.a;:;lil-vnamic Async. (GraphlLah)
2. Asynchronous systems provide algorithmic benefits for MLDM (a) (Utilizing o] e
most recent data, avoiding stragglers effects and execution time variability) LR W
. . . (c) LoopyBP Conv.
3. Dynamic computation (Asymmetric convergence (b) and dynamic scheduling
(C)) u'g:m' PvA e
4. Serializability: Ensuring parallel execution have an equivalent sequential
execution (d) | ok
Y. Low et al. “GraphLab: A New Framework For Parallel Machine Learning.” arXiv, 2014. (d) ALS (ju‘::a_;:[ency o

Y. Low et al. “Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud.” VLDB, 2012.
]

GraphLab: Abstraction

[Update,(v,) | Shared Data Table

[Update, (v,)
GGG

Scheduler

» Data Model: GraphLab’s low level abstraction (like MPI and Pthreads
abstractions)
« Data graph: G = (V, E) for representing program states
« Shared Data Table (SDT): T[key] = Value to support global shared state

 User defined computation
« Update function (Map): Local computations
D, € f(Dg,, T) = f(v) where S, is the neighborhood of v
say S, as scope of v
« Synch mechanism (Reduce): Global aggregations
r .0+ = Fold, (D,, r,(") Aggregate data

T[K] = Apply, (r,M) Write results
 Unlike Pregel and Giraph, Synch runs continuously in the background

« Execution Model: Starts with initial set T, removes vertices from T (RemoveNext(T)) and
add new vertices back into T

Y. Low et al. “GraphLab: A New Framework For Parallel Machine Learning.” arXiv, 2014.
]

GraphLab: Consistency Model

» Ensuring serializability: Full, edge and vertex consistency models allow the runtime to optimize parallel

execution while maintaining serializbility.

» The simultaneous execution of two update functions in overlapping scopes can lead to race-condition.

* Full consistency » Edge consistency

- : : Read/write access on the
Full read/write access In vertex and adjacent edges

the scope but only read to adjacent
« Scopes cannot have VErtices _
overlaps » Slightly overlapping scopes
== S 3238 i

Edge Data

Vertex Data

Edge
Consistency Consistency Consistency
Model

Model

(=0
Vertex

(a) Data Graph (b) Consistency Models

Y. Low et al. “GraphLab: A New Framework For Parallel Machine Learning.” arXiv, 2014.

* \Vertex consistency

 Write access to the vertex
read access to adjacent
edges and vertices

o All vertices can run update

simultaneously
AN
. —e)
/\h 2=

O
- - . p & g
% — H— -O- — 2 —
;| e eeeEe) § |5
5 -
I A 3 4 -' 1 >

| === Sl s

(c) Consistency and Parallelism

GraphLab: Consistency results

Shooting algorithm, sparse Shooting algorithm, dense
18 16
14] 14
1 Linear q2
g " Vertex Consistency E '
E g ull Consistency w O
e i
L am b 4
2 e 2
0= 4 B g8 10 12 14 18 0 Z 4 B & 10 12 14 16

Mumber of Processors Mumber of Procesgors

Y. Low et al. “GraphLab: A New Framework For Parallel Machine Learning.” arXiv, 2014.
B e

Initialization Phase | Graphlab Execution Phase !
Distributed (MapReduce) Distributed [Cluster Distributed [

File system Graph Builder File system : TCP RPC Comms File system :
Parsing + H

Distributed GraphLab: Design [=

« Two stage partitioning
« Graph is partitioned into k atoms (partitions) (k > number of machines)

» Ghost: Set of vertices and edges adjacent to partition boundary. Serves the purpose of cache coherency
« Atom index (a meta graph of k atoms) is partitioned among machines

Execution engines

« Chromatic engine (Partially asynchronous):

« Edge and full consistencies implemented using 15t and 2"d order vertex coloring to achieve
serializable parallel execution

 Hard to schedule, and availability of graph coloring prior to computation

« Distributed locking engine (asynchronous)
 Associating a readers-writer lock with each vertex
* \ertex consistency is achieved by acquiring a write lock on the central vertex of each scope

» Edge consistency is achieved by acquiring a write lock on the central vertex and read locks on
adjacent vertices

 Full consistency is achieved by acquiring write locks on the central vertex and all adjacent vertices.
 Deadlocks are voided using a canonical order: (machine 1D, vertex ID(owner(v), v))

Y. Low et al. “Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud.” VLDB, 2012.

Distributed GraphLab: Results

Latency of remote lock acquisition and data synchronization

300

250

Runtime (s}
= = (%]
g 8 &

8

o &

100 1000 10000
Maximum Pipeline Length

(b) Pipeline Length

* Named Entity Recognition (NER)
 The task of determining the type of a noun-
phrase (e.g. a person) from its context

« Poor computation to communication ratio
« Computation ¥
« Communication T

4 Machines B Machines

16 Machines
Mumber of Machines

(a) Runtime

Y. Low et al. “Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud.” VLDB, 2012.

Runtime(s)
=

-
=
(]

10

10

(8}

_Iflurrtirne
L]

10

...
—

1
48

Netflix challenge

16 24 32 40 48 66 B4
#Machines

(d) Netflix Comparisons

" Hadoop

Pl
Lal
-
[]
+
-
Vo
L}
| ——
‘.

48 16 24 32 40 48 56 64
#Modes

(c) NER Comparisons

Discussion Outline

Graph Partltlonlng

rchitecture-aware and streaming

Cloud-based Graph
Analytics Platforms

- \ertex-centric (GraphLab, Distributed GraphLab and POwerG raph)

Linear algebra
HPC-based Graph Analytics Platforms

PowerGraph: Challenges of Natural Graphs

 Natural graphs have the properties of skewed power-law degree distribution.

« a small fraction of the vertices are adjacent to a large fraction of the edges.
» E.g. celebrities in a social network.

* 1% of the vertices in the Twitter graph are adjacent to nearly 50% the edges.
« Under power-law degree distribution the probability that a vertex has degree
dis P(d) cc d# I.e. &> 0 controls the skewness

 Natural graphs have a power-law constant o ~ 2
* Internet has a power-law constant ~ 2.2

S0 15 15
30 .
3 —Graphlab Fan-in 3 Pragel(Piccolo) Fan—out 7] i) Pregel (Piccolo
§ 25 § 40 gel{) o Graphlab a egel {)
2 09 Pregel(Piccolo) Fan-in | g £10 210 Graphlab
g g 30 Graphlah Fanout € Pregel (Piccolo) = PowerGrash
215 PowerGraph Fan—in | 20 O PowerGraph O owerGrap
E 10 E PowerGraph Fan—ou] 2 § oD g
= = 1] @
=]
= 5 =10/ 5 S
h_ﬁ-"’_‘-h\._._r__ - A | —— —— — —.—__‘___-__
1.8 1.9 2 2.1 22 1.8 1.9 2 2.1 2.2 B 1.9 2 2.4 2.2 ‘D 1.9 2 21 2.2
[i 1 o
(a) Power-law Fan-In Balance (b) Power-law Fan-Out Balance (c) Power-law Fan-In Comm. (d) Power-law Fan-Out Comm.

J. E. Gonzalez, et al. "PowerGraph: Distributed graph-parallel computation on natural graphs." OSDI, 2012.

PowerGraph: Abstraction — Gather, Apply
and Scatter (GAS) Model

interface GASVertexProgram(u) {

// Run on gather_nbrs(u)

. - gather (D, D, Dy) — Accum
° Gather Z é @VEN (U) g(DU’ D(U,V)l DV) (Fan_ln) sum (Accum left, Accum right) — Accum
« Collect information from adjacent edges 2PPLy (Du Accum = Dt
« Commutative and associative scatter (D*", D(,y), D)) — (DY, Accum)

* Apply: D" & a(D,)
o Update the value of the central vertex AIlgoritlém 1: Vertex-Program Execution Semantics
nput: Center vertex u

o Scatter v V EN(U) (D(U,V)) é S(Dunew’ D(U,V)! DV) (Fan_ if cached accumulator a,, is empty then I\/Iap

foreach neighbor v in gather _nbrs(u) do
Out) | ay + sum(ay, gather(Dy, Dy,)., D,)Reduce
. . d
« Update the data of adjacent vertices o
Dy, «+ apply(D,. a,)
¢ E - g - Pag e Ran k foreach neighbor v scatter_nbrs(u) do

(D(yv)-Aa) « scatter(D, Dy, \y, D)
if a, and Aa are not Empty then a, + sum(a,, Aa)
else a, «+ Empty

» Gather = in-edges, Scatter = out-edges

end

J. E. Gonzalez, et al. "PowerGraph: Distributed graph-parallel computation on natural graphs." OSDI, 2012.

=) (O——i
el ==

PowerGraph: | @"#ﬂ z
Distributed Graph Placement .22« @52 o°

* Percolation theory suggests that power-law graphs have good vertex-cut.
« Intuition: Cutting very high degree vertices into smaller fractions (i.e. E >> V)

* Balanced p-way vertex cut min 7 LA s max|{e € E | A(e) =m}|, <

veV

« \ertices can span over multiple machines Number of replicas Uniform dis. of edges
 Each vertex can have multiple replicas (master, mirrors)
» A(v) is the set of machines have a replica of vertex v
 Edges are assigned to machines evenly and stored only once
« Two implementations
» Randomized vertex-cut for p machines

 Greedy vertex-cut for edge (u, v)
» Coordinated, Oblivious Mgﬁnﬁ['élﬂiv'll Am{es+1}=f<]

Ll
P

J. E. Gonzalez, et al. "PowerGraph: Distributed graph-parallel computation on natural graphs." OSDI, 2012.

PowerGraph: Distributed Graph Placement
(continued)

 Balanced p-way vertex cut

1. Randomized vertex-cut for p machines

» The simplest way to have a vertex cut is to randomly assign vertices to
machines

* Then uses balanced vertex-cut objective to balance edges

2. Greedy vertex-cut for edge (u, v)

« placing the i1+1 edge (u, v) after having placed the previous I edges
* A(u) N A(v) = Assign e;,, to the intersection machine
* ((A(u) NA(Vv)) =2) A (A(v) # D N A(v) # @) = Assign e;,, to the machine with less edges
. ((A(lrJ]) = Q) A (A(V) #0)) V ((A(u) £ D) A (A(V) = ©)) = Assign e;,, to the available
machine
* ((A(u) =0) A (A(v) = @)) = Assign g;,, to the least loaded machine

A, A(eiy1) = ff]

arg i]E Alv
arg i [):J)

J. E. Gonzalez, et al. "PowerGraph: Distributed graph-parallel computation on natural graphs." OSDI, 2012.
I

Discussion Outline

Graph Partltlonlng

rchitecture-aware and streaming

Cloud-based Graph
Analytics Platforms

Vertex-centric (GraphLab, Distributed GraphLab and PowerGraph)

Linear Algebra (LA3J)
HPC-based Graph Analytics Platforms

Linear Algebra as an Alternate for Graph
Theory

* Large combinatorial graphs appears in

 Computational biology, analytics, web T T
search, dynamic systems, and sparse / Continuous " piscrete
matrix methods "“\\ETYS'CE" mudehgg;‘ \ structure analysis /

« Leveraging the duality between graphs e e

and sparse matrices

* Adjacency matrix Is considered as a
sparse matrix data structure l |

* Linear algebra primitives on this matrix
map to certain graph operations
* SpMV:y=AxX

 SpPMM:C=AxB

Linear algebra Graph theory

A. Bulug, et al. "The Combinatorial BLAS: Design, implementation, and applications.” The International Journal of High Performance Computing Applications, 2011.
D. Bader, et al. "The Graph BLAS effort and its implications for Exascale.” SIAM, 2014.

Partition Segment Tile (Partition)
p \p

p
AT /_/) x y/./ Owrer /./
1

1 1 1 \@ 1 1
. - 2 2 2
LA3: Design — R
4 4 4
(a) 1D (N=4, p=4) (b) 2D (N=4, p=4)
» Programming model (Initi, Scatter, Gather, Combine, Apply) snnnEnEnE T nnnl T B
° Pl‘e-prOCGSSing 2 2|24 2 2 21424 4 4
1. Vertex classification: 1al1l3] [3] [3 2l al2]a| 2] [2
* Regular, source, sink, and isolated 5 lalala 4 4 11313 3 3
* Row-group, and column-group. Group leader for classifying vertices
2 Edge processing: (c) 2D-CYCLIC (N=16, p=4) (d) 2D-STAGGERED (N=16, p=4)
» Each tile is spitted into sub-tiles "
* Increasing cache/memory locality T 61x
« Partitioning (Tile, Segment) g =
« 1-D partitioning (Edge-cut): Imbalanced tiles due to skewness [i o 1
« 2-D partitioning (Vertex-cut): Imbalanced tiles due to skewness § o ([[*F
» 2-D Cyclic and 2-D Staggered: Higher parallelism, more balanced "1
GraphPad PowerGraph GraphX Mean
 Execution Engine Gemini Giaph Combus
- Computation filtering (Pre-loop, Main-loop and Post-loop) e oven e e ooy stem

« Communication filtering (Eliminating communication for empty tiles) datasets. Mean speedup is 10x over all systems.
 Pseudo-asynchronous Computation and Communication (2D-STAGGERED)

Y. Ahmad, et al. "LA3: A Scalable Link- and Locality-Aware Linear Algebra-Based Graph Analytics System" VLDB, 2018
L

Discussion Outline

Graph Partltlonlng

are and st

Cloud based Graph Analytlcs Platforms

r algebra

HPC-based Graph
Analytics Platforms

« NUMA-aware (Gall0S, Gemini and Mosaic)

4=

Galois: Amorphous Data Parallelism (ADP)
Programming Model

1. Active nodes (red dots)
* When?
« Autonomous scheduling (worklist): More parallelism, high diameter graphs
 Coordinated scheduling (BSP): Less parallelism, low diameter graphs

2. Neighborhood (gray clouds)

3. Operator: Morph the graph by adding or removing active nodes
 Push style: Reads from active node and writes to its neighbors

 Pull style: Reads from its neighbors and writes to the active node
» Requires less synchronization

bfs 6007 2077

SSSp 1521 308

dia 7265 2296

ce 5063 1380

* Galois borrowed two concepts fro OS: pr 3190 541
« 1. Priority scheduling, 2. Memory Allocator

 Typical tasks in graph processing take only microseconds to execute

D. Nguyen, et al. "A lightweight infrastructure for graph analytics."” SOSP, 2013.

Galois: Schedulers —

(a) A bag.

 Basic scheduler: Topology aware bag of tasks (vertices)

e Chunk (- Core): 8 — 64 vertices processing with LIFO policy
» Package (= Sockets): A list of chunks processed with LIFO policy
» Bag: Alist of packages
* When chunks associated with a core becomes empty, it is moved to the package-level list
« |If package-level list is empty, the core probes other packages

» One core is always responsible for probing package-level list for hungry cores. Core
* Obim scheduler: A priority scheduler with a sequence of bags. . .

« Each bag Is associated with a priority level
» Global Map: A sparse global data structure for locating tasks by threads
» Local Map: A lazy cache portion of the global map known to the thread.
» Global/local maps operations:

» Updating the map is done via a global log

» Pushing a task via creating a new mapping in the global map

* Retrieving a task only when the bag a thread is working on becomes empty . _
» Back-scan: Scanning the global map for earlier priorities. [h) Map in obim.

D. Nguyen, et al. "A lightweight infrastructure for graph analytics."” SOSP, 2013.

Galois: Memory Allocator

* Memory allocator: A scalable multi-threaded algorithm that directly
addresses NUMA concerns

* Asslab allocator for allocations in the runtime

A central page pool of huge pages
» The page pool is NUMA-aware and can be reclaimed
« Each application preallocates some number of pages prior to execution

« Separate allocators for each block size
 Each thread maintains a free list of blocks
« |f empty, a bump-pointer region allocator is used to divide the page into blocks
« A Bump-pointer region allocator for allocations from user code

 Used for variable-sized allocations required by temporaries created by user code
« |f the allocation size exceeds page size (2 MB), the allocator falls back to malloc

D. Nguyen, et al. "A lightweight infrastructure for graph analytics.” SOSP, 2013.

Galois: NUMA-aware Optimizations

 Topology-aware synchronization:

* The most common synchronization is among cores on the same package
(socket) that share the same L3 cache
« Threads in a package communicate via a shared counter
* Much faster compared to Pthread barriers

« Code size optimizations:

* Reduce the runtime cost of features by having a specialized implementation
of an operator which is generated at compile time and only supports the
required features.

» Checking new tasks requires 4 instructions (a load, a branch,
and 2 stores), on average this is 2% of SSSP instructions.

 Tight loops are more likely to fit in L1 instruction cache

D. Nguyen, et al. "A lightweight infrastructure for graph analytics.” SOSP, 2013.
T

Discussion Outline

Graph Partltlonlng

are and st

Cloud based Graph Analytlcs Platforms

r algebra

HPC-based Graph
Analytics Platforms

« NUMA-aware (Galios, Geminl and Mosaic)

4=

Computation rather than communication appears

G e m i n i) I\/I Otivati O n to be the actual bottleneck of distributed systems

ici - Shared
1.We lose system efficiency as we move from single-thread SIS ISR

to shared memory, then to distributed implementations. Singlethredd Distributed
- - - . Cores 1 24 x 1 24 x 8
ZACtlve Vertlces are Changlng System OST Ligra ~ Galois PowerG. PowerL.

« E.g. CC: Dense - Spare, SSSP: Sparse - dense - Sparse Runtime (s) 999 219 193 403 269

Instructions 325G 496G 482G T.15T 6.06T

3.Active vertices requires different communication patterns Mem Ref. - 158G 323G 234G 958G 872G

Comm. (GB) - - - 115 38.1

 Sparse edge set: Push model - IPC 171 0408 0414 0500 0.655
, LLC Miss 877% 439% 497% 71.0% 54.9%
 Dense edge set: Pull model < CPUUGL 100% 917% 968% 65.5% 68.4%

« Gemini extends Ligra to distributed systems

* Adaptive switch between sparse and dense representations |
according to threshold |E|/20 in a shared memory machine.

 Gemini borrows the concept of master/mirror vertices psesil s N
from PowerGraph where graph is partitioned and vertices ()~ ,0 <O O og ______ (D)
are distributed across different nodes ~0O | Qﬁ

« Sparse (push) mode: Master = Mirrors st s o s e O e @
» Dense (pull) mode: Mirrors - Master

» 1 message per active master-mirror pair (O(E) - O(V) messages)

X. Zhu, et al. "Gemini: A Computation-Centric Distributed Graph Processing System." OSDI. 2016.
J. Shun, et al. "Ligra: a lightweight graph processing framework for shared memory." PPoPP, 2013.

220 iterations of PageRank on Twitter

Gemini: 2 Level Chunk-based Partitioning

1. Partitions vertices into contiguous chunks to preserve locality

 Vertices of a p-node cluster G is partitioned into p contiguous vertex chunks
(Vor - V1)
« E.g. Facebook friendship or, Geo-locations are closed together
 Scalable when having random accesses
« Sacrifice balanced edge distribution to some degree
 Contiguous memory pages, thus reducing the memory footprint and preserving locality (Is
It TRUE in practice?) . .
« Edges are balanced by:
* alVi|+|EP|st a=8(p-1)
« E; ={(src, dst, value) e E | dst € V.}
« EP ={(src, dst, value) e E | src € V.}

X. Zhu, et al. "Gemini: A Computation-Centric Distributed Graph Processing System." OSDI. 2016.

Gemini: 2 Level Distributed Graph
Representation (continued)

2. NUMA-aware sub-partitioning per node with s Graph (cluster)
sockets = Chunks (nodes)
- Continues chunks = sub-chunks of size Vi/s = Sub-chunks (sockets)
_ _ — Per-core chunks (cores)
* Improving both sequential and random accesses > mini chunks of 64 vertices
 Faster memory access and better utilization of LLC
 Avoid remote access to other sockets cluster. v
 Multi-level chunk-based partitioning pernode r/

ata Partitioning

 Sub-chunks = per-core chunks of size 64 vertices .../ . . "7

Work Partitighing

 Task scheduling: Threads can steal mini-chunks — jeccoce -

C per-core-partitions

from others (interleaved chunks) T

per-core
(V5] /64) mini-chunks

X. Zhu, et al. "Gemini: A Computation-Centric Distributed Graph Processing System." OSDI. 2016.

Gemini: Results

10x 2X
Graph Raw PowerGraph Gemini
enwiki-2013 0.755 13.1 4.02
twitter-2010 10.9 138 32.1
uk-2007-05 27.8 322 73.1
weibo-2013 479 561 97.5
clueweb-12 318 - 597
Table 5: Peak 8-node memory consumption (in GB). *-” -- gptir_ni_zed Single Thread
indicates incompletion due to running out of memory. _ ==
P
Eiool &
&
p-s _Tpr(s) Z|Vil/(p-s) ZXlEi|/(p-s) ZIV/|/(p-s)
1.2 12.7 20.8M 734M 27.6M o < —
2-2 7.01 10.4M 36TM 19.6M 12 4 8 12 24
4.2 3.88 5.21IM 184M 13.5M # of Cores
8§-2 | 3.02 2.60M 91.8M 10.5M
Table 6: Subgraph sizes with growing cluster size Figure 9: Intra-node scalability (PR on twitter-2010)

X. Zhu, et al. "Gemini: A Computation-Centric Distributed Graph Processing System." OSDI. 2016.

Discussion Outline

Graph Partltlonlng

are and st

Cloud based Graph Analytlcs Platforms

r algebra

HPC-based Graph
Analytics Platforms

« NUMA-aware (Galios, Gemini and MOS&iC)

4=

Mosalic: Processing a Trillion Edges Graph on
a Single Machine

 Trillion Edges Challenge:
» Facebook largest graph has 1.4 billion vertices and 1 trillion edges.
» Giraph requires 200 nodes for processing it.

» Hardware specifications:

» Host processor: Non-uniform Memory Access(NUMA\) architecture
» 2 sockets, 12 cores each

» Coprocessor (A supercomputer on card): 4 Xeon Phi with 61 cores each with
* 4 hardware threads
* 512-bit SIMD unit
» 1.224 GHz speed
+ 512KB L2 cache

* 6 NVMe SSD (1.2 TB): Allows terabytes of storage with up to 10x throughput than SSDs
« RAM: 768 GB

* Implementation: 17 K lines of code in C++

 Dividing components of a graph processing:
 Scale-up: Memory intensive operations, e.g. vertex-centric operations are offloaded to fast host processors
» Scale-out: Compute and I/O intensive operations, e.g. edge-centric operations are offloaded to coprocessors

S. Maass, et al. "Mosaic: Processing a trillion-edge graph on a single machine.” EuroSys, 2017
e

Mosalic: Tiles - Local Graph Processing Units

 Graph data structure
* Depending on size of the graph, vertices are identified a by 32-bit or 64-bit
Integer (4-8 bytes)
* Tiles (subgraphs) data structures

1. Each tile is an independent unit of edge processing
2. Tiles are evenly distributed among coprocessors

* Inside a Tile
» The number of unique vertices in a tile is bounded by I ..,
* The number of edges per tile varies (Static load balancing)
 Tiles are of size SxSi.e.S=216

e |..=21% and Integer vertex IDs, per tile storage is 21° * 4 bytes = 256 KB <
512 KB L2 cache size

S. Maass, et al. "Mosaic: Processing a trillion-edge graph on a single machine.”" EuroSys, 2017

Mosalic: Tiles - Local Graph Processing Units

Tile (1, =4) Target vertex (global)

(Continued)

1 233 456 7 8 9101112 Tile-1 (T,)
1)]

« On-disk data structure: | gfﬂg
« Tile index: local > global : doca), BB
¢ EdgeS *; P Tilr:-l;::]

. Edge list o B e T I (PCL S
« CSR (#target vertices > 2 * #edges) ol || | } ﬂ\@/ﬁmﬂm
 Locality; e e | e 3088
« Sequential accesses to the edges in local graph Sowree Global adjacency P;;.;.;j;if(}:?}'2}:;:_{2”;2,;‘:, »
{global) matrx (5=3)) : local edge store order

» Write locality by storing edges in sorted order

 Conversion:
« Stream of partitions of adjacency matrix of global graph > Sx Si.e. S =216
 Edges are consumed following Hilbert-ordered with I .. = 216

max

« Hilbert-ordered tiling | el I
» Traversing tiles in a certain order (Py;, Pyy, Py, ..) Py 2 d mﬁéﬁ_ L3 eg
 Preserving locality while traversing tiles N @ s 8Q

- 1/O prefetching ° | ° 3 ¢
2B

sorted by

S. Maass, et al. "Mosaic: Processing a trillion-edge graph on a single machine.” EuroSys, 2017

l=4and5=3

Edges

et src (gt #et)

|_\ M3, 2)

i(@): Q" S5

& @ BB

@ @3 M

| - :}

2B =
ﬁ‘(}fﬂpr&'.&'ﬁ'f{!

Reducing the number of bytes by 20%

Mosaic: System Components

* Scale-out components (Using pairs of Xeon L <curetsiate> <newtstate>
PhIS and NVM eS) 1‘er;a::' .:mr: P FL LiEiG : : stripped
» Local Fetcher: Given a tile extracts the vertices o Ca e Cow
« Edge Processor: Given a set of vertices, extracts | — memory localiy)
the edges from a tile, executes the algorithm on o L7/
edges and send results to local reducer procevar [] [oo
« Local Reducer: Aggregates vertices state and D) (Tord) | fFrfere
send to global reducer W b O
 Scale-up componenets (Using host N g =g pere
processors) A g g
» Global Reducer: Disjoint partitions of vertices me | gl (0o data transfer
are assigned to sockets responsible for receiving i e 1
data from local reducer and updating vertices | = oot i
« Striped partitions: Stripes of vertices are NVMe processing\ Lconcumntil0___ process
Xeon Phi iy

Interleaved among NUMA nodes

S. Maass, et al. "Mosaic: Processing a trillion-edge graph on a single machine.” EuroSys, 2017

Mosaic: Results

Graph #vertices #edges Raw data Mosaic size (red.)
*rmat24 16.8 M 0.3B 2.0GB 1.1GB (—45.0%
twitter 41.6 M 1.5B 10.9GB 7.7GB (—29.4%
Up to 68% reduction in data size *rmat27 134.2 M 2.1B 16.0 GB 11.1GB (—30.6%)
uk2007-05 105.8 M 3.7B 27.9GB 8.7 GB (—68.8%)

hyperlinkl4 1.7246M 64.4B 480.0GB 152.4GB (—68.3%

*rmat-trillion 42949M 1,000.0B 8,000.0GB 4,816.7GB (—39.8%

100 ~ 35 ~
Hilbert
Row-First maammm a0 -
B0 Column-First mmms
a’?‘-_“ 25
) § 60 - = 20 L
45% better cache locality and 4 g ;
o . = 5 |
up to 43% reduction in runtime w40} s 15r |
G o : :
3 10 - | |
20 L i ;
5 | | ;
0 0 [| ! !
Pagerank BF5S WCC Pagerank BFS WCC

S. Maass, et al. "Mosaic: Processing a trillion-edge graph on a single machine.” EuroSys, 2017

Summary In-memory Out-of-core

Galois

Single machine GraphLab

Pregel
Giraph

Distributed PowerGraph

Dist. GraphLab
LA3
Gemini

Summary Synchronous Asynchronous

Pregel
Giraph
Dist. GraphlLab
PowerGraph
Gemini
Mosaic

Graphlab
Dist. GraphlLab
PowerGraph

Graph

SpMV

Summary

» Graph Partitioning plays a crucial rule in balancing computation and
computation across machines of a cluster.

 Graph processing engines are being built for certain applications
* Machine learning and data mining
* Linear algebra
 Graph traversal

* These engines require optimizations in different layers
« Hardware: NUMA-awareness, storage locality
« Data distribution: partitioning
« Network: Message passing

* Here, we survey a couple of engines and algorithms and investigate their
characteristics.

References

 Graph Partitioning
 Architecture aware

 A. Zheng, et al. “Architecture-Aware Graph Repartitioning for Data-Intensive Scientific
Computing.“ Big Data, 2014.

 A. Zheng, et al. “PARAGON: Parallel Architecture-Aware Graph Partition Refinement
Algorithm .“ EDBT, 2016.

« A. Zheng, et al. “Planar: Parallel Lightweight Architecture-Aware Adaptive Graph
Repartitioning.*“ ICDE, 2016.

* A. Zheng, et al. “Argo: Architecture-aware graph partitioning.” Big Data, 2016.
* \ertex-centric
« C. Martella, et al. "Spinner: Scalable graph partitioning in the cloud.”" ICDE, 2017.

. Eb%thimian, et al. "Ja-be-ja: A distributed algorithm for balanced graph partitioning." SASO,

 Streaming

« C. Tsourakakis, et al. "Fennel: Streaming graph partitioning for massive scale graphs."
WSDM, 2014.

References

 Cloud-based Graph Analytics Platforms

 \ertex-centric
* Y. Lowetal. “GraphLab: A New Framework For Parallel Machine Learning.” arXiv, 2014,

* Y. Low et al. “Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud.*
VLDB, 2012.

» J. E. Gonzalez, et al. "PowerGraph: Distributed graph-parallel computation on natural graphs." OSDI, 2012.
 Linear Algebra Engines

« A. Bulug, et al. "The Combinatorial BLAS; Design, implementation, and applications." The International
Journal of High Performance Computing Applications, 2011

« D. Bader, et al. "The Graph BLAS effort and its implications for Exascale." SIAM, 2014.

. \\;.L%rllgmazl%,lgt al. "LA3: A Scalable Link- and Locality-Aware Linear Algebra-Based Graph Analytics System"

» HPC-based Graph Analytics Platforms

« NUMA-aware
* D. Nguyen, et al. "A lightweight infrastructure for graph analytics.” SOSP, 2013.
« X. Zhu, et al. "Gemini: A Computation-Centric Distributed Graph Processing System." OSDI, 2016.
« S. Maass, et al. "Mosaic: Processing a trillion-edge graph on a single machine." EuroSys, 2017

