
Systems and Methods for Exascale Graph
Analytics

presented by Mohammad Mofrad
University of Pittsburgh

April 27, 2018

Comprehensive exam committee

Professor Rami Melhem, Computer Science Department, University of Pittsburgh

Professor Alex Labrinidis, Computer Science Department, University of Pittsburgh

Professor Jack Lange, Computer Science Department, University of Pittsburgh

Graph Partitioning
Vertex-centric, architecture-aware and streaming

Cloud-based Graph Analytics Platforms
HPC-based Graph Analytics Platforms

Discussion Outline

Graph Partitioning Goals and Metrics

• Partitioning
• Random or Hash-based partitioning have

extremely poor locality and cut-edge

• Work balance
• When: partition  Node in the cluster

• Scalability limitation for high degree vertices
• Symmetric computation at vertices

• Computation
• Exploiting higher parallelism
• Distributing computation
• Edges or vertices

• Communication
• Communication asymmetry

• Storage
• Aggregating storage mediums across machines
• Exceeding memory capacity

J. E. Gonzalez, et al. "PowerGraph: Distributed graph-parallel computation on natural graphs." OSDI, 2012.

• k-way balanced partitioning
of G = (V, E)

• |E| / k . (1 + ) i.e.  > 0

• |V| / k . (1 + ) i.e.  > 0

• Partitioning criteria:

• Edge cut

• Vertex cut

Graph Partitioning
• Architecture-aware (Aragon, Paragon, Planar and

Argo)
• Vertex-centric

• Streaming
Cloud-based Graph Analytics Platforms
HPC-based Graph Analytics Platforms

Discussion Outline

Architecture Aware Graph Partitioning

• Non-uniform Inter-node
communication
• Communication cost among nodes

• Non-uniform Intra-node
communication
• Cache hierarchy among cores

A. Zheng, et al. “Architecture-Aware Graph Repartitioning for Data-Intensive Scientific Computing.“ Big Data, 2014.

Lower cut-edge Better communication

• Migration cost

• Among nodes

• Because of network interconnect

• Among cores

• Because of memory hierarchy

GOAL: (Re)balance the load across nodes while minimizing inter-node communication and migration cost (not just edge-cut)

Architecture Aware Graph Partitioning

• Problem Statement: Let G = (V, E)

• Balance the load

• Minimize the communication cost

• Minimize the migration cost

A. Zheng, et al. “Architecture-Aware Graph Repartitioning for Data-Intensive Scientific Computing.“ Big Data, 2014.

w(Pi) is the aggregated
weight of vertices
 is the imbalanced ratio

 is the #steps
w(e) is the edge weight
c(P’i, P’j) is the communication cost

=

vs(v) is the vertex size
c(Pi, P’j) is the migration cost

An unbalanced partitioning of G

Aragon: Two Phase Partitioning

• 1. Cluster, 2. Cores
• Inter-node partitioning (Comparison)

• TopoFM: (2 partitions + communication cost)  Repartition

• Process a single vertex per iteration!

• Topology aware Gain computation g(v)
• Pi and Pj partitions are placed in Ni and Nj nodes with v  Pi

• Greedy gain function

A. Zheng, et al. “Architecture-Aware Graph Repartitioning for Data-Intensive Scientific Computing.“ Big Data, 2014.

Aragon: Two Phase Partitioning

• 1. Cluster, 2. Cores

• Intra-node partitioning

• HierCacheLB (Partition hierarchically)

• FlatCacheLB (partition entirely and then assign)

• Advantages

• Consider both network topology and system architecture at the same time

• Most works that I read consider communication is cheap

• Drawbacks

• Memory hug

• Uniform hardware layout

• Can only refine one partition at a time, so it is a sequential algorithm

A. Zheng, et al. “Architecture-Aware Graph Repartitioning for Data-Intensive Scientific Computing.“ Big Data, 2014.

Tree Communication cost

A
rg

o
:

T
h
e

C
u
rs

e
o
f

C
o
n
te

n
ti

o
n

A. Zheng, et al. “Argo: Architecture-aware graph partitioning.” Big Data, 2016.

X

X

X

Zero-copy without involvement

Data communication among cores is done via shared memory which is a source of contention

Argo: Graph Partitioning Model

• Derived from linear deterministic greedy algorithm
• A streaming partitioning algorithm

• Argo (with heterogeneity awareness)

• Contention awareness
• Penalize intra-node communication by offloading a certain amount of intra-

node communication across compute nodes

• s1 and s2 are inter-node and inter-socket communication costs

• λ  [0, 1] controls the communication & contention heterogeneity
• λ = 0 only communication; λ = 1 only contention;  (0, 1] both

A. Zheng, et al. “Argo: Architecture-aware graph partitioning.” Big Data, 2016.

Aragon, Paragon, Planar, and Argo Comparison

Features Aragon Paragon Planar Argo

Architecture-aware Yes Yes Yes Yes

Algorithm Sequential Parallel Parallel & Adaptive Parallel

Runtime Heavyweight Lightweight Lightweight Lightweight

Incremental No No Yes No

Partitioning Space All Boundary vertices Boundary vertices All

Balanced partitions Edge weights Edge weights Edge weights Edge weights

Migration decision Deterministic Deterministic Probabilistic (p  [0, maxg] Greedy

Speed Slow Decent Fast Fast

Resource Contention No Yes Yes Yes

A. Zheng, et al. “Architecture-Aware Graph Repartitioning for Data-Intensive Scientific Computing.“ Big Data, 2014.

A. Zheng, et al. “Paragon: Parallel Architecture-Aware Graph Partition Refinement Algorithm .“ EDBT, 2016.

A. Zheng, et al. “Planar: Parallel Lightweight Architecture-Aware Adaptive Graph Repartitioning.“ ICDE, 2016.

B. A. Zheng, et al. “Argo: Architecture-aware graph partitioning.” Big Data, 2016.

Graph Partitioning
• Architecture-aware

• Vertex-centric (Spinner and Ja-Be-Ja)

• Streaming (Fennel)
Cloud-based Graph Analytics Platforms
HPC-based Graph Analytics Platforms

Discussion Outline

Spinner: Balanced k-way label propagation

• Migration decisions

• Evaluation metrics

C. Martella, et al. "Spinner: Scalable graph partitioning in the cloud." ICDE, 2017.

Ja-Be-Ja

• Balanced k-way graph partitioning
• Partitioning G = (V, E) into k equal-sized partitions with an offset 

• Partition function : V {1, …, k} where (p) shows the partition of vertex

• Np(c) = {q  Nv : (q) = c} i.e. xp(c) = |Np(c)| is the number of neighbors of with
partition c and xp is the number of neighboring nodes

• Energy of the graph: E(G, ) = ½ pV (xp – xp(p))

• * = argmin E(G, ) s.t. |V(c1)| = |V(c2)|, ∀ c1, c2  {1, …, k}

• IDEA: Initialize partitions at random and apply a local search heuristic
towards lower energy state (min-cut)
• Energy of the system is defined as the number of nodes with different colors

• Energy of a node is defined as the number of its neighbors with different partitions

F. Rahimian, et al. "Ja-be-ja: A distributed algorithm for balanced graph partitioning." SASO, 2013.

Fennel: Streaming k-way graph partitioning

• Streaming partitioning == One pass partitioning

• In streaming graph partitioning vertices are arrived and the decision of
placement has to be done on-the-fly

• IDEA: Greedy scheme

• Send vertex v to partition that maximizes
• P = (S1, …, Sk) where S is a subset of V vertices set

• |V| = n, |E| = m

• e(S, V \ S) is the cut-edge across the cut (S, V \ S)

• Edge cardinality |e(Si, Si)| (both ends)

C. Tsourakakis, et al. "Fennel: Streaming graph partitioning for massive scale graphs." WSDM, 2014.

VerticesEdges

Spinner, Ja-Be-Ja, Argo and Fennel
Comparison

• Spinner
• Cloud (Giraph)

• Vertex-centric

• Balanced (edge)

• Undirected graphs

• Arbitrary partition
sizes (Capacity)

• Edge-cut

• Label propagation

• Ja-Be-Ja
• Theoretic

• Vertex-centric

• Balanced (edge)

• Weighted graphs

• Arbitrary partition
sizes (Initialization)

• Edge-cut

• Local search

• Argo
• HPC (MPI)

• (Vertex-centric)

• Balanced (weights)

• Weighted graphs

• Arbitrary partition
sizes (Quota)

• Resource contention

• Linear deterministic
greedy

• Fennel
• Big Data

• (Vertex-centric)

• Balanced (relaxation)

• Undirected graphs

• Arbitrary partition
sizes (\Gamma)

• Edge-cut

• Greedy scheme

Fennel: Comparison with Spinner & Metis

• What is the difference between Fennel and others?

C. Tsourakakis, et al. "Fennel: Streaming graph partitioning for massive scale graphs." WSDM, 2014.

Graph Partitioning
Vertex-centric, architecture-aware and streaming

Cloud-based Graph
Analytics Platforms
• Vertex-centric (GraphLab, Distributed GraphLab and

PowerGraph)
• Linear algebra
HPC-based Graph Analytics Platforms

Discussion Outline

Pregel: A Legacy Graph Processing Platform

• Pregel and its open-source implementation Giraph

• Bulk Synchrnous Processing (BSP)

• Super-step

• Vertex centric

• Combiners (Aggregators)

• What makes a graph processing engine?

• A sequential code that is executed concurrently on all vertices/edges.

• The engine itself which is iteratively process the graph by running the
vertices/edges code

G. Malewicz, et al. "Pregel: a system for large-scale graph processing." International Conference on Management of data, 2010.

GraphLab: Machine Learning and Data
Mining (MLDM) algorithm properties
• MapReduce limitations:

• MapReduce fails when there is computational dependencies

• MapReduce imposes a massive amount of I/O for iterative computations

• MapReduce does not support iterative workflow

• MLDM requirments

1. MLDM algorithms have graph structured computation (Dependent
computation)

2. Asynchronous systems provide algorithmic benefits for MLDM (a) (Utilizing
most recent data, avoiding stragglers effects and execution time variability)

3. Dynamic computation (Asymmetric convergence (b) and dynamic scheduling
(c))

4. Serializability: Ensuring parallel execution have an equivalent sequential
execution (d)

Y. Low et al. “GraphLab: A New Framework For Parallel Machine Learning.” arXiv, 2014.

Y. Low et al. “Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud.“ VLDB, 2012.

GraphLab: Abstraction

• Data Model: GraphLab’s low level abstraction (like MPI and Pthreads
abstractions)
• Data graph: G = (V, E) for representing program states
• Shared Data Table (SDT): T[key]  Value to support global shared state

• User defined computation
• Update function (Map): Local computations

DSv f(DSv, T) = f(v) where Sv is the neighborhood of v
say Sv as scope of v

• Synch mechanism (Reduce): Global aggregations
rk

(i+1) = Foldk(Dv, rk
(i)) Aggregate data

rk
l = Merge(rk

i, rk
j) If provided, parallel tree reduction is used

T[k] = Applyk(rk
(|V|)) Write results

• Unlike Pregel and Giraph, Synch runs continuously in the background

• Execution Model: Starts with initial set T, removes vertices from T (RemoveNext(T)) and
add new vertices back into T

Y. Low et al. “GraphLab: A New Framework For Parallel Machine Learning.” arXiv, 2014.

GraphLab: Consistency Model
• Ensuring serializability: Full, edge and vertex consistency models allow the runtime to optimize parallel

execution while maintaining serializbility.

• The simultaneous execution of two update functions in overlapping scopes can lead to race-condition.

Y. Low et al. “GraphLab: A New Framework For Parallel Machine Learning.” arXiv, 2014.

• Edge consistency
• Read/write access on the

vertex and adjacent edges
but only read to adjacent
vertices

• Slightly overlapping scopes

• Vertex consistency
• Write access to the vertex

read access to adjacent
edges and vertices

• All vertices can run update
simultaneously

• Full consistency
• Full read/write access in

the scope

• Scopes cannot have
overlaps

C
o

n
ten

tio
n

GraphLab: Consistency results

Y. Low et al. “GraphLab: A New Framework For Parallel Machine Learning.” arXiv, 2014.

Shooting algorithm, sparse Shooting algorithm, dense

Distributed GraphLab: Design

• Two stage partitioning
• Graph is partitioned into k atoms (partitions) (k > number of machines)

• Ghost: Set of vertices and edges adjacent to partition boundary. Serves the purpose of cache coherency

• Atom index (a meta graph of k atoms) is partitioned among machines

Execution engines

• Chromatic engine (Partially asynchronous):
• Edge and full consistencies implemented using 1st and 2nd order vertex coloring to achieve

serializable parallel execution
• Hard to schedule, and availability of graph coloring prior to computation

• Distributed locking engine (asynchronous)
• Associating a readers-writer lock with each vertex
• Vertex consistency is achieved by acquiring a write lock on the central vertex of each scope
• Edge consistency is achieved by acquiring a write lock on the central vertex and read locks on

adjacent vertices
• Full consistency is achieved by acquiring write locks on the central vertex and all adjacent vertices.
• Deadlocks are voided using a canonical order: (machine ID, vertex ID(owner(v), v))

Y. Low et al. “Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud.“ VLDB, 2012.

Distributed GraphLab: Results

• Named Entity Recognition (NER)

• The task of determining the type of a noun-
phrase (e.g. a person) from its context

• Poor computation to communication ratio

• Computation 

• Communication 

Y. Low et al. “Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud.“ VLDB, 2012.

Netflix challenge Latency of remote lock acquisition and data synchronization

Graph Partitioning
Vertex-centric, architecture-aware and streaming

Cloud-based Graph
Analytics Platforms
• Vertex-centric (GraphLab, Distributed GraphLab and PowerGraph)

• Linear algebra
HPC-based Graph Analytics Platforms

Discussion Outline

PowerGraph: Challenges of Natural Graphs

• Natural graphs have the properties of skewed power-law degree distribution.
• a small fraction of the vertices are adjacent to a large fraction of the edges.

• E.g. celebrities in a social network.
• 1% of the vertices in the Twitter graph are adjacent to nearly 50% the edges.

• Under power-law degree distribution the probability that a vertex has degree
d is P(d)  d- i.e.  > 0 controls the skewness
• Natural graphs have a power-law constant  ~ 2
• Internet has a power-law constant  ~ 2.2

J. E. Gonzalez, et al. "PowerGraph: Distributed graph-parallel computation on natural graphs." OSDI, 2012.

PowerGraph: Abstraction – Gather, Apply
and Scatter (GAS) Model
• Gather:  vN (u) g(Du, D(u,v), Dv) (Fan-in)

• Collect information from adjacent edges

• Commutative and associative

• Apply: Du
new
 a(Du, )

• Update the value of the central vertex

• Scatter: ∀ v N(u): (D(u,v))  s(Du
new, D(u,v), Dv) (Fan-

out)

• Update the data of adjacent vertices

• E.g. PageRank

• Gather  in-edges, Scatter  out-edges

J. E. Gonzalez, et al. "PowerGraph: Distributed graph-parallel computation on natural graphs." OSDI, 2012.

Map

Reduce

PowerGraph:
Distributed Graph Placement

• Percolation theory suggests that power-law graphs have good vertex-cut.

• Intuition: Cutting very high degree vertices into smaller fractions (i.e. E >> V)

• Balanced p-way vertex cut

• Vertices can span over multiple machines

• Each vertex can have multiple replicas (master, mirrors)

• A(v) is the set of machines have a replica of vertex v

• Edges are assigned to machines evenly and stored only once

• Two implementations

• Randomized vertex-cut for p machines

• Greedy vertex-cut for edge (u, v)

• Coordinated, Oblivious

J. E. Gonzalez, et al. "PowerGraph: Distributed graph-parallel computation on natural graphs." OSDI, 2012.

Uniform dis. of edgesNumber of replicas

PowerGraph: Distributed Graph Placement
(continued)
• Balanced p-way vertex cut

1. Randomized vertex-cut for p machines
• The simplest way to have a vertex cut is to randomly assign vertices to

machines

• Then uses balanced vertex-cut objective to balance edges

2. Greedy vertex-cut for edge (u, v)
• placing the i+1 edge (u, v) after having placed the previous i edges

• A(u) ∩ A(v) Assign ei+1 to the intersection machine

• ((A(u) ∩ A(v)) = ∅) ∧ (A(v) ≠ ∅ ∩ A(v) ≠ ∅) Assign ei+1 to the machine with less edges

• ((A(u) = ∅) ∧ (A(v) ≠ ∅)) ∨ ((A(u) ≠ ∅) ∧ (A(v) = ∅)) Assign ei+1 to the available
machine

• ((A(u) = ∅) ∧ (A(v) = ∅)) Assign ei+1 to the least loaded machine

J. E. Gonzalez, et al. "PowerGraph: Distributed graph-parallel computation on natural graphs." OSDI, 2012.

Graph Partitioning
Vertex-centric, architecture-aware and streaming

Cloud-based Graph
Analytics Platforms
• Vertex-centric (GraphLab, Distributed GraphLab and PowerGraph)

• Linear Algebra (LA3)

HPC-based Graph Analytics Platforms

Discussion Outline

• Large combinatorial graphs appears in
• Computational biology, analytics, web

search, dynamic systems, and sparse
matrix methods

• Leveraging the duality between graphs
and sparse matrices
• Adjacency matrix is considered as a

sparse matrix data structure

• Linear algebra primitives on this matrix
map to certain graph operations
• SpMV: y = A  x

• SpMM: C = A  B

Linear Algebra as an Alternate for Graph
Theory

A. Buluç, et al. "The Combinatorial BLAS: Design, implementation, and applications." The International Journal of High Performance Computing Applications, 2011.

D. Bader, et al. "The Graph BLAS effort and its implications for Exascale." SIAM, 2014.

LA3: Design

Y. Ahmad, et al. "LA3: A Scalable Link- and Locality-Aware Linear Algebra-Based Graph Analytics System" VLDB, 2018

• Programming model (Initi, Scatter, Gather, Combine, Apply)

• Pre-processing
1. Vertex classification:

• Regular, source, sink, and isolated

• Row-group, and column-group. Group leader for classifying vertices

2. Edge processing:
• Each tile is spitted into sub-tiles

• Increasing cache/memory locality

• Partitioning (Tile, Segment)
• 1-D partitioning (Edge-cut): Imbalanced tiles due to skewness
• 2-D partitioning (Vertex-cut): Imbalanced tiles due to skewness
• 2-D Cyclic and 2-D Staggered: Higher parallelism, more balanced

• Execution Engine
• Computation filtering (Pre-loop, Main-loop and Post-loop)
• Communication filtering (Eliminating communication for empty tiles)
• Pseudo-asynchronous Computation and Communication (2D-STAGGERED)

p p p  p

Graph Partitioning
Vertex-centric, architecture-aware and streaming

Cloud-based Graph Analytics Platforms
Vertex-centric, Linear algebra

HPC-based Graph
Analytics Platforms
• NUMA-aware (Galios, Gemini and Mosaic)

Discussion Outline

Galois: Amorphous Data Parallelism (ADP)
Programming Model
1. Active nodes (red dots)

• When?
• Autonomous scheduling (worklist): More parallelism, high diameter graphs

• Coordinated scheduling (BSP): Less parallelism, low diameter graphs

2. Neighborhood (gray clouds)

3. Operator: Morph the graph by adding or removing active nodes
• Push style: Reads from active node and writes to its neighbors

• Pull style: Reads from its neighbors and writes to the active node
• Requires less synchronization

• Galois borrowed two concepts fro OS:
• 1. Priority scheduling, 2. Memory Allocator

• Typical tasks in graph processing take only microseconds to execute

D. Nguyen, et al. "A lightweight infrastructure for graph analytics." SOSP, 2013.

Galois: Schedulers

• Basic scheduler: Topology aware bag of tasks (vertices)
• Chunk ( Core): 8 – 64 vertices processing with LIFO policy

• Package ( Sockets): A list of chunks processed with LIFO policy
• Bag: A list of packages

• When chunks associated with a core becomes empty, it is moved to the package-level list
• If package-level list is empty, the core probes other packages

• One core is always responsible for probing package-level list for hungry cores.

• Obim scheduler: A priority scheduler with a sequence of bags.
• Each bag is associated with a priority level
• Global Map: A sparse global data structure for locating tasks by threads
• Local Map: A lazy cache portion of the global map known to the thread.
• Global/local maps operations:

• Updating the map is done via a global log
• Pushing a task via creating a new mapping in the global map
• Retrieving a task only when the bag a thread is working on becomes empty

• Back-scan: Scanning the global map for earlier priorities.

D. Nguyen, et al. "A lightweight infrastructure for graph analytics." SOSP, 2013.

Galois: Memory Allocator

• Memory allocator: A scalable multi-threaded algorithm that directly
addresses NUMA concerns

• A slab allocator for allocations in the runtime

• A central page pool of huge pages

• The page pool is NUMA-aware and can be reclaimed

• Each application preallocates some number of pages prior to execution

• Separate allocators for each block size

• Each thread maintains a free list of blocks

• If empty, a bump-pointer region allocator is used to divide the page into blocks

• A Bump-pointer region allocator for allocations from user code

• Used for variable-sized allocations required by temporaries created by user code

• If the allocation size exceeds page size (2 MB), the allocator falls back to malloc

D. Nguyen, et al. "A lightweight infrastructure for graph analytics." SOSP, 2013.

Galois: NUMA-aware Optimizations

• Topology-aware synchronization:
• The most common synchronization is among cores on the same package

(socket) that share the same L3 cache
• Threads in a package communicate via a shared counter

• Much faster compared to Pthread barriers

• Code size optimizations:
• Reduce the runtime cost of features by having a specialized implementation

of an operator which is generated at compile time and only supports the
required features.
• Checking new tasks requires 4 instructions (a load, a branch,

and 2 stores), on average this is 2% of SSSP instructions.

• Tight loops are more likely to fit in L1 instruction cache

D. Nguyen, et al. "A lightweight infrastructure for graph analytics." SOSP, 2013.

Graph Partitioning
Vertex-centric, architecture-aware and streaming

Cloud-based Graph Analytics Platforms
Vertex-centric, Linear algebra

HPC-based Graph
Analytics Platforms
• NUMA-aware (Galios, Gemini and Mosaic)

Discussion Outline

Gemini: Motivation
1.We lose system efficiency as we move from single-thread

to shared memory, then to distributed implementations.

2.Active vertices are changing:
• E.g. CC: Dense  Spare, SSSP: Sparse  dense  Sparse

3.Active vertices requires different communication patterns:
• Sparse edge set: Push model 

• Dense edge set: Pull model 

• Gemini extends Ligra to distributed systems
• Adaptive switch between sparse and dense representations

according to threshold |E|/20 in a shared memory machine.

• Gemini borrows the concept of master/mirror vertices
from PowerGraph where graph is partitioned and vertices
are distributed across different nodes
• Sparse (push) mode: Master Mirrors

• Dense (pull) mode: Mirrors Master

• 1 message per active master-mirror pair (O(E)  O(V) messages)
X. Zhu, et al. "Gemini: A Computation-Centric Distributed Graph Processing System." OSDI. 2016.

J. Shun, et al. "Ligra: a lightweight graph processing framework for shared memory." PPoPP, 2013.

220 iterations of PageRank on Twitter

Single thread

Shared memory

Distributed

Computation rather than communication appears
to be the actual bottleneck of distributed systems

Gemini: 2 Level Chunk-based Partitioning

1. Partitions vertices into contiguous chunks to preserve locality

• Vertices of a p-node cluster G is partitioned into p contiguous vertex chunks
(V0, .., Vp-1)

• E.g. Facebook friendship or, Geo-locations are closed together

• Scalable when having random accesses

• Sacrifice balanced edge distribution to some degree

• Contiguous memory pages, thus reducing the memory footprint and preserving locality (Is
it TRUE in practice?)

• Edges are balanced by:

•  |Vi| + |Ei
D| s.t.  = 8(p – 1)

• Ei
S = {(src, dst, value)  E | dst  Vi}

• Ei
D = {(src, dst, value)  E | src  Vi}

X. Zhu, et al. "Gemini: A Computation-Centric Distributed Graph Processing System." OSDI. 2016.

Gemini: 2 Level Distributed Graph
Representation (continued)

X. Zhu, et al. "Gemini: A Computation-Centric Distributed Graph Processing System." OSDI. 2016.

2. NUMA-aware sub-partitioning per node with s
sockets

• Continues chunks  sub-chunks of size Vi/s

• Improving both sequential and random accesses

• Faster memory access and better utilization of LLC

• Avoid remote access to other sockets

• Multi-level chunk-based partitioning

• Sub-chunks  per-core chunks of size 64 vertices

• Task scheduling: Threads can steal mini-chunks
from others (interleaved chunks)

Graph (cluster)
 Chunks (nodes)
 Sub-chunks (sockets)
 Per-core chunks (cores)
mini chunks of 64 vertices

Gemini: Results

• R

X. Zhu, et al. "Gemini: A Computation-Centric Distributed Graph Processing System." OSDI. 2016.

10x 2x

Graph Partitioning
Vertex-centric, architecture-aware and streaming

Cloud-based Graph Analytics Platforms
Vertex-centric, Linear algebra

HPC-based Graph
Analytics Platforms
• NUMA-aware (Galios, Gemini and Mosaic)

Discussion Outline

Mosaic: Processing a Trillion Edges Graph on
a Single Machine
• Trillion Edges Challenge:

• Facebook largest graph has 1.4 billion vertices and 1 trillion edges.
• Giraph requires 200 nodes for processing it.

• Hardware specifications:
• Host processor: Non-uniform Memory Access(NUMA) architecture

• 2 sockets, 12 cores each

• Coprocessor (A supercomputer on card): 4 Xeon Phi with 61 cores each with
• 4 hardware threads

• 512-bit SIMD unit

• 1.224 GHz speed

• 512KB L2 cache

• 6 NVMe SSD (1.2 TB): Allows terabytes of storage with up to 10x throughput than SSDs
• RAM: 768 GB

• Implementation: 17 K lines of code in C++

• Dividing components of a graph processing:
• Scale-up: Memory intensive operations, e.g. vertex-centric operations are offloaded to fast host processors
• Scale-out: Compute and I/O intensive operations, e.g. edge-centric operations are offloaded to coprocessors

S. Maass, et al. "Mosaic: Processing a trillion-edge graph on a single machine." EuroSys, 2017

Mosaic: Tiles - Local Graph Processing Units

• Graph data structure
• Depending on size of the graph, vertices are identified a by 32-bit or 64-bit

integer (4–8 bytes)

• Tiles (subgraphs) data structures
1. Each tile is an independent unit of edge processing

2. Tiles are evenly distributed among coprocessors

• Inside a Tile
• The number of unique vertices in a tile is bounded by Imax

• The number of edges per tile varies (Static load balancing)

• Tiles are of size S x S i.e. S = 216

• Imax=216 and Integer vertex IDs, per tile storage is 216 * 4 bytes = 256 KB <
512 KB L2 cache size

S. Maass, et al. "Mosaic: Processing a trillion-edge graph on a single machine." EuroSys, 2017

Mosaic: Tiles - Local Graph Processing Units
(Continued)
• On-disk data structure:

• Tile index: local  global
• Edges:

• Edge list
• CSR (#target vertices > 2 * #edges)

• Locality:
• Sequential accesses to the edges in local graph
• Write locality by storing edges in sorted order

• Conversion:
• Stream of partitions of adjacency matrix of global graph  S x S i.e. S = 216

• Edges are consumed following Hilbert-ordered with Imax = 216

• Hilbert-ordered tiling
• Traversing tiles in a certain order (P11, P12, P22, ..) Pij  d
• Preserving locality while traversing tiles
• I/O prefetching

S. Maass, et al. "Mosaic: Processing a trillion-edge graph on a single machine." EuroSys, 2017 Reducing the number of bytes by 20%

Imax = 4 and S = 3

Mosaic: System Components

• Scale-out components (Using pairs of Xeon
Phis and NVMes)
• Local Fetcher: Given a tile extracts the vertices
• Edge Processor: Given a set of vertices, extracts

the edges from a tile, executes the algorithm on
edges and send results to local reducer

• Local Reducer: Aggregates vertices state and
send to global reducer

• Scale-up componenets (Using host
processors)
• Global Reducer: Disjoint partitions of vertices

are assigned to sockets responsible for receiving
data from local reducer and updating vertices

• Striped partitions: Stripes of vertices are
interleaved among NUMA nodes

S. Maass, et al. "Mosaic: Processing a trillion-edge graph on a single machine." EuroSys, 2017

Mosaic: Results

S. Maass, et al. "Mosaic: Processing a trillion-edge graph on a single machine." EuroSys, 2017

Up to 68% reduction in data size

45% better cache locality and
up to 43% reduction in runtime

Summary

Galois
GraphLab

Pregel
Giraph

PowerGraph
Dist. GraphLab

LA3
Gemini

MosaicSingle machine

Distributed

In-memory Out-of-core

Summary

Pregel
Giraph

Dist. GraphLab
PowerGraph

Gemini
Mosaic

GraphLab
Dist. GraphLab
PowerGraph

LA3

Graph

SpMV

Synchronous Asynchronous

Summary

• Graph partitioning plays a crucial rule in balancing computation and
computation across machines of a cluster.

• Graph processing engines are being built for certain applications
• Machine learning and data mining
• Linear algebra
• Graph traversal

• These engines require optimizations in different layers
• Hardware: NUMA-awareness, storage locality
• Data distribution: partitioning
• Network: Message passing

• Here, we survey a couple of engines and algorithms and investigate their
characteristics.

References

• Graph Partitioning
• Architecture aware

• A. Zheng, et al. “Architecture-Aware Graph Repartitioning for Data-Intensive Scientific
Computing.“ Big Data, 2014.

• A. Zheng, et al. “PARAGON: Parallel Architecture-Aware Graph Partition Refinement
Algorithm .“ EDBT, 2016.

• A. Zheng, et al. “Planar: Parallel Lightweight Architecture-Aware Adaptive Graph
Repartitioning.“ ICDE, 2016.

• A. Zheng, et al. “Argo: Architecture-aware graph partitioning.” Big Data, 2016.

• Vertex-centric
• C. Martella, et al. "Spinner: Scalable graph partitioning in the cloud." ICDE, 2017.
• F. Rahimian, et al. "Ja-be-ja: A distributed algorithm for balanced graph partitioning." SASO,

2013.

• Streaming
• C. Tsourakakis, et al. "Fennel: Streaming graph partitioning for massive scale graphs."

WSDM, 2014.

References

• Cloud-based Graph Analytics Platforms
• Vertex-centric

• Y. Low et al. “GraphLab: A New Framework For Parallel Machine Learning.” arXiv, 2014.

• Y. Low et al. “Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud.“
VLDB, 2012.

• J. E. Gonzalez, et al. "PowerGraph: Distributed graph-parallel computation on natural graphs." OSDI, 2012.

• Linear Algebra Engines
• A. Buluç, et al. "The Combinatorial BLAS: Design, implementation, and applications." The International

Journal of High Performance Computing Applications, 2011.

• D. Bader, et al. "The Graph BLAS effort and its implications for Exascale." SIAM, 2014.

• Y. Ahmad, et al. "LA3: A Scalable Link- and Locality-Aware Linear Algebra-Based Graph Analytics System"
VLDB, 2018

• HPC-based Graph Analytics Platforms
• NUMA-aware

• D. Nguyen, et al. "A lightweight infrastructure for graph analytics." SOSP, 2013.

• X. Zhu, et al. "Gemini: A Computation-Centric Distributed Graph Processing System." OSDI, 2016.

• S. Maass, et al. "Mosaic: Processing a trillion-edge graph on a single machine." EuroSys, 2017

