
Voice-enabled Internet of Things
Advanced Topics in Internet of Things

Presented by Mohammad Mofrad
University of Pittsburgh

April 26, 2018

1

Motivations

• IoT devices are all around your home
• Smart speakers: Amazon Echo & Google Home
• Heating & cooling: Nest Learning Thermostat & Ecobee4
• Smart locks & doors: August Smart Lock & SkyBell HD
• Smart lightening: Philips Hue & Lifx Color
• Cleaning: iRobot Roomba, Neato Botvac
• Smart shades: Lutron's Serena Shades
• Security cameras: Amazon Cloud Cam & Nest Protect

• Ways to communicate with IoT devices:
• Graphical User Interface (GUI):

• Pushing buttons
• Clicking on icons

• Speech Interfaces:
• Just talking to the device which is more intuitive and efficient
• Speech processing and natural language processing empowers these interfaces

2

Motivations (Continued)

• Limitations of the current smart home IoT devices (e.g. a smart speaker)
1. Most of smart home devices are not customizable and customers cannot extend

them to have their customized voice commands or tune their accuracy

2. Smart home speakers cannot handle complex scenarios such as:
1. They fail processing combined commands separated by “and”.

2. They fail processing two concurrent commands

• Contributions of this project is two folds:
1. Building a customizable voice-enabled IoT device

2. Proposing a solution for handling two concurrent voice commands to a voice-enabled
IoT device

3

A Customizable Voice-
enabled IoT Device
Blind Source Separation for Voice-enabled IoT

4

How Speech recognition works for IoT

5

Google Cloud Speech API
Alexa Voice Service (AVS)
Wit Speech API
CMUSphinx

Natural Language Processing
Statistical Language Models

Text

Voice

Proposed Customizable Voice-enabled IoT Device

• The proposed model consists of the following components:
1. We use a small USB microphone that captures the incoming voice

2. We use Google Cloud Speech API which is free for developers

3. We use a simple Natural Language Processing (NLP) model to create a language
model for playing music

4. We use the inferred intent on the target device to play/pause the music

6

Natural Language

Processing

(NLP)

Google

Cloud

Speech API

1. Recorded human voice, e.g.

voice saying “Play music for me.”

2. Plain text, e.g.

text saying “Play music for me.”
3. Extract the intent, e.g. action “play music”,

sub-action “music”, and device “Spotify”

Semantic

interpreter
1 2 3

4. Execute the intent, e.g.

call Spotify API to play music

4

Introducing Voice-enabled IoT Device

• The total cost of building the prototype is $68.42 and consists of the following
two building blocks:

• The hardware components of the customized IoT device:
• Raspberry Pi 3 Model B Motherboard, $35.80

• Quad core Cortex A53 @ 1.2GHz

• 1GB SDRAM

• Wireless 802.11

• Bluetooth 4.0

• Kinobo USB 2.0 Mini Microphone, $4.65

• Samsung 64GB Micro SD Card, $19.99

• Raspberry Pi Case, $7.98

7

Introducing Voice-enabled IoT Device

• The total cost of building the prototype is $68.42 and consists of the following two
building blocks:
• Other hardware which we did not pay for and you can easily find one around your place:

• A 2.5A power adaptor (mobile adaptor)
• A monitor and HDMI cable
• A USB keyboard and mouse
• Wired/Bluetooth speaker

• The software components of the prototype are:
• Google Cloud Speech API which is free to use
• Raspbian OS
• Python 3.5

8

Speech API Wrapper

Music Player Service

FIFO
Queue

Demo of Voice-enabled IoT Device

9

A Customizable Voice-enabled IoT Device

Blind Source Separation for
Voice-enabled IoT

10

Blind Source Separation (BSS)

• Blind Source Separation is the separation of a set of source signals from a set
of mixed signals without knowing about the mixing process of source signals.
• Cocktail party effect

• Cocktail party problem

11

BSS

A Customizable Voice-enabled IoT Device

Blind Source Separation for
Voice-enabled IoT

Reconstruction Independent
Component Analysis (RICA)

12

Reconstruction Independent Component Analysis (RICA)

• Independent Component Analysis (ICA) is a method for separating a multivariate
signal into its component with the assumption of:
• Subcomponents are non-Gaussian
• Subcomponents are statistically independent

• ICA is a special case of blind source separation

• RICA algorithm is based on minimizing an objective function.
• Source model: x =  + As where

• xp  1 mixed signals
• p  1 offset values
• Ap  q mixing matrix i.e. p = q
• sq1 original signal

• Source signal can be recovered by
• s = A-1(x - )

• Without knowing A and , given observations x1, x2, .., RICA extracts the original signal s1, s2, …

Quoc V. Le, et al. "ICA with Reconstruction Cost for Efficient Re Feature Learning." NIPS, 2011 13

Reconstruction Independent Component Analysis (RICA)
(continued)
• RICA uses

• A data matrix X

Xn  p = [x1
T, x2

T, …, xn
T]T i.e. xi p  1

• Each row represents an observation and each column represents a measurement

• An initial random weight matrix W

Wp  q = [w1, w2, …, wq] i.e. wi p  1

• And optimizes

 g(XW) where g = ½ log(cosh(2x))
• The objective function h results in a minimal matrix W that transforms data X to XW

h = λ/n n
i=1 ||WWTxi - xi||2

2 + 1/n n
i=1

q
j=1jg(wj

Txi)

Quoc V. Le, et al. "ICA with Reconstruction Cost for Efficient Re Feature Learning." NIPS, 2011 14

A Customizable Voice-enabled IoT Device

Blind Source Separation for
Voice-enabled IoT

Reconstruction Independent Component Analysis (RICA)

Crossed Lowpass Filter

15

Lowpass Filter

• Lowpass filter
• Allows signals below a cutoff frequency

(passband)

• Attenuates signals above the cutoff frequency
(stopband)

• By removing some frequencies, the
lowpass filter smooths the signal.

• Hearing frequency range
• The frequency of human voice is between 100

Hz and 8 KHz

• The fundamental frequency is 100 Hz to 900Hz

16

Lowpass Filter Design

• Filter design: Butterworth filter
• Butterworth filter completely reject the

unwanted frequencies

• Butterworth filter has uniform sensitivity
for the wanted frequencies

• Filter details
• The sample rate fs is 44100 Hz

• The cutoff frequency fc is 500

• fc /(fs / 2) = 0.023  rad/sample

17

Crossed Lowpass Filter

18

Rec1

Butterworth

filter

Rec2

Filtered1
Rec1 – Filtered2

Butterworth

filter
Filtered2 Rec2 – Filtered1

Text1

Text2

Text’
1

Text’
2

Google Cloud

Speech API

Transcription Accuracy

• Accuracy of transcription is calculated using
• Accuracy = 1 - Word Error Accuracy (WER) i.e. WER

WER = (S + D + I) / (S + D + C) i.e.

• Models

1. Baseline

2. RICA

3. Crossed Lowpass

• Recordings are annotated in a supervised manner and the ground-truth data
is used to calculate WER for each model.

19

S = #Substitutions
D = #Deletions
I = #Insertions
C = #Corrects
N = #Words = S + D +C

Results

20

Algorithm Baseline RICA Crossed Lowpass

Mic1 0.96 0.95 0.98

Mic2 0.44 0.18 0.47

Total 0.70 0.56 0.73

Algorithm Baseline RICA Crossed Lowpass

Mic1 0.96 0.91 0.99

Mic2 0.95 0.35 0.96

Total 0.95 0.63 0.97

Dataset 1:
30 different sentences
Pairs of sentences are recorded in the proximity of
the microphone

Dataset 2:
44 different sentences
Pairs of sentences are recorded far from the
proximity of the microphone

Conclusion

• The contributions of this project is two folds
1. Building a voice-enabled IoT device comparable with smart speakers

• Cost effective

• Customizable

2. Designing filters to improve the recognition power of existing speech-to-
text APIs such as Google Cloud Speech API
• Adding a wrapper atop of Google Cloud Speech API which enables the API to

process two concurrent commands which is not supported by the smart speakers
right now.

• By enhancing the quality of the input speech signal , we were able to improve the
performance of Google Cloud Speech API by 3%.

21

Questions

22

