Personalized Speech Recognition for IoT

Mahnoosh Mehrabani, Srinivas Bangalore, Benjamin Stern @ interactions LLC Proceedings of IEEE 2nd World Forum on Internet of Things (WF-IoT)

Presented by Mohammad Mofrad

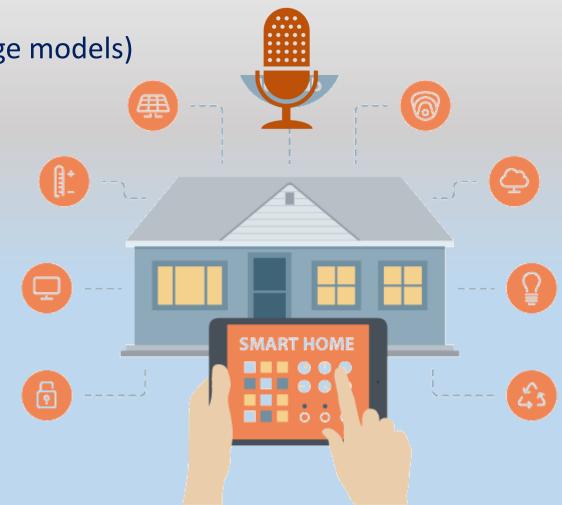
University of Pittsburgh March 01, 2018

Motivations

- Internet of Things (IoT) is the expansion of Internet that impacts everyday lives
- It's a network of Interconnected smart devices such as TV, Refrigerator, clock, and etc. which mostly are using Cloud storage as their storage medium.
- IoT use cases
 - Machine to machine interactions
 - Machine to human interactions
- Options to communicate with an IoT device
 - Graphical User Interface (GUI) which involves pushing the buttons or clicking
 - Speech interfaces

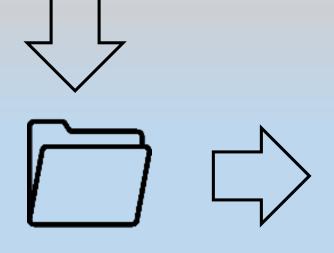
Main contributions

- Tools:
 - Speech recognition (acoustic models)
 - Natural Language Understanding (language models)
- Outcome:
 - Personalized Speech Recognition
 - By allowing user to customize their speech communications e.g. having names for devices
 - For smart home applications
 - And customizable devices



How Speech recognition works for IoT

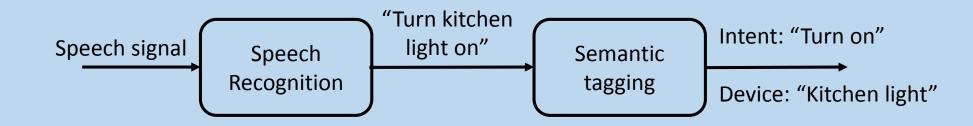
Google Cloud Speech API Alexa Voice Service (AVS) Wit Speech API CMUSphinx



Natural Language Processing Statistical Language Models

Spoken Language Understanding for IoT

- Spoken Language Understanding (SLU) is the process of understanding human speech at machines
 - 1. Automatic Speech Recognition (ASR): **Speech** → **Text**
 - 2. Semantic Interpretation of what was said by the person \sim
- Here, acoustic models and language models are used to decode speech signal into a sequence of words and then extract the intent from it
 - acoustic models extract sounds or phones (or diphones)
 - Language models captures linguistic units (or words)

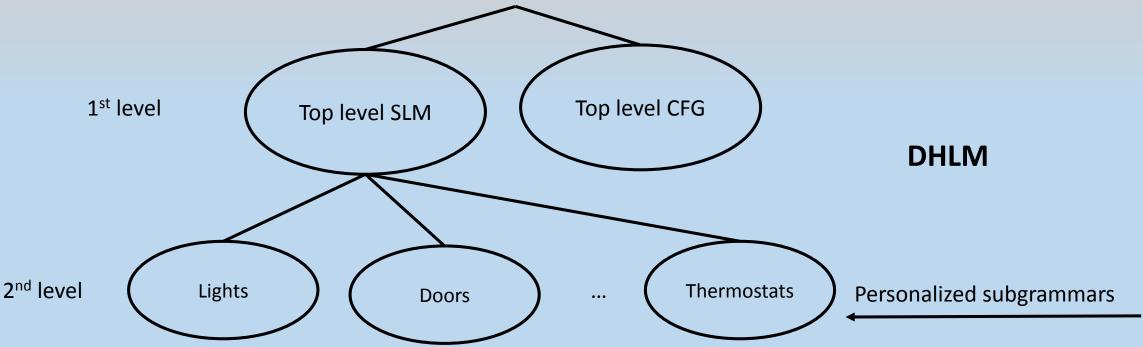


Language Models for IoT

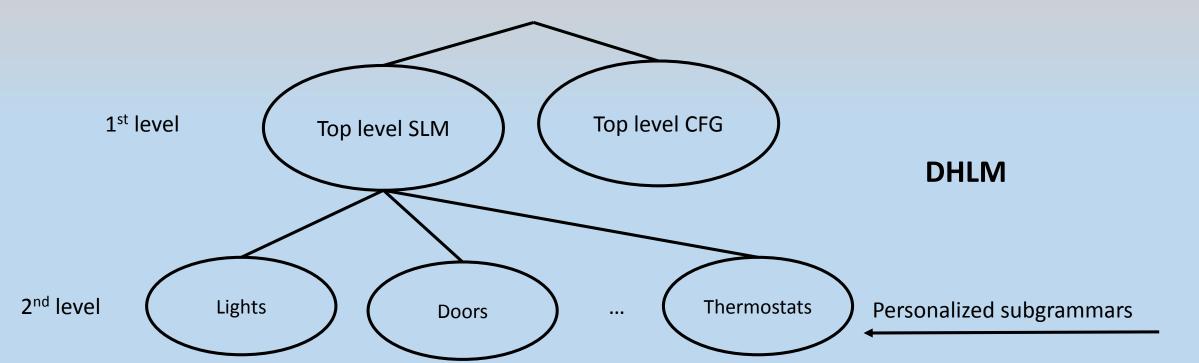
- Types of language models
 - Statistical Language Models (SLM) which uses probability distribution of linguistic units
 - Large amount of training data
 - Flexible
 - Context Free Grammars (CFG) which uses linguistic rules (linguistic grammars)
 - End user interactions
 - Restrictive
 - Domain-specific SLM which uses a generic SLM plus domain specific knowledge
 - E.g. sequence of words that might use in a smart home
 - A same language model can be used for different users Reference
 - Devices can be personalized by device labels
 - Misrecognition of spoken language can happen
 - Dynamic Hierarchical Language Model (DHLM)
 - Generic SLM + Domain knowledge + Device names

rs	Reference	Generic Hypothesis
	Tell me status of the dinning room dimmer	Tell me status of the dinning room Denver
	Turn gym light on	Turn Jim light on
	Dim dinning room light	Jim dinning room light
	What is the status of left kitchen window	What is the status of laugh kitchen window

- Hierarchical Language Model (HLM)
 - Creates a tree for the language model
 - Each level defines symbols undefined in a previous level
 - Each level can have undefined symbols
 - Statistical Language Model (SLM) is used to create the language model
 - (Weighted) Finite State Machine (FSM) is used to show language models

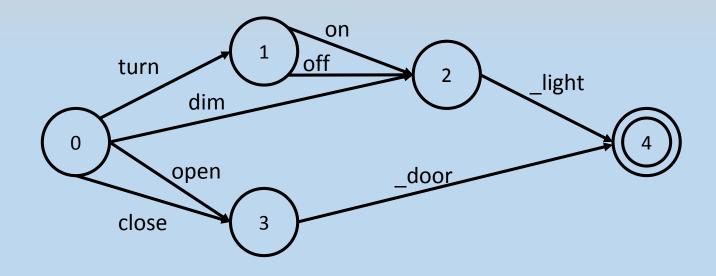


- 1. Top level SLM is a language model created for non-terminals (e.g. different devices are wildcarded)
- 2. Top level CFG is a CFG that covers common fixed phrases (e.g. help commands)
- 3. The subgrammars are CFGs that define the undefined symbols of the 1st level (e.g. replacing a wildcard in the language model with refrigerator)



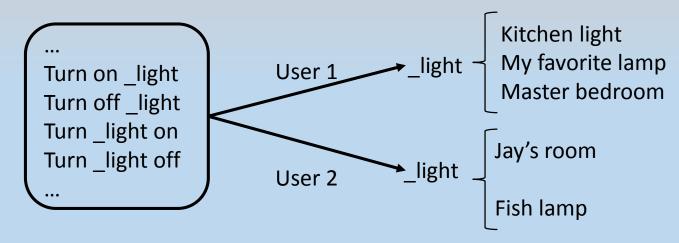
8

- Different SLMs are build for different categories of devices such as lights, doors, windows, sensors, cameras, thermostats, and etc.
 - Each category has a set of various commands for training
- At train time, for each SLM the device category is replaced by the device name
- Requirements: Device names, User names



- User database
 - User name
 - List of devices
 - Different variations of device names may be added to the model
 - List of categories of devices

• The SLM created from this information can be updated anytime

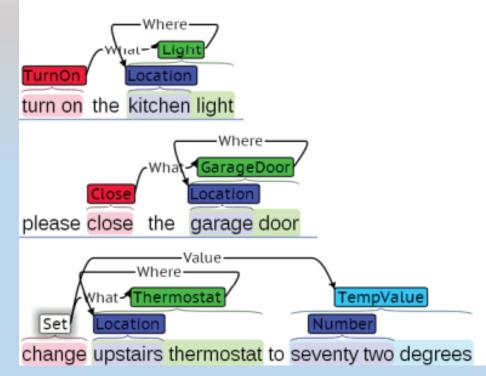


Semantic Analysis

- The output to the Spoken Language Understanding (SLU) is a semantic interpretation of what was said.
 - Speech recognition word accuracy is not so important
 - Why?
 - Semantic tags associated with the speech recognition output are more important
 - Why?
 - A successful task performs the correct action for the specific device

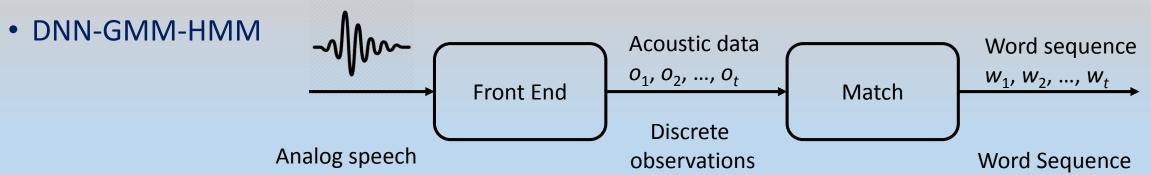
Semantic Analysis

- Semantic tags are used
 - Intent (the action part of the command)
 - Device name (the target device)
 - E.g. adjust the thermostat on the second floor to 68°
 - Intent: Set the temperature to 68° degrees
 - Device: Thermostat on the second floor
- How to calculate the accuracy
 - Compare the semantic tags VS human labeling
 - The annotated data (BRAT) is also used for training the top level SLM



Acoustic models

- Hidden Markov Model (HMM) to show the temporal variability of speech
 - And Gaussian Mixture Model (GMM) for each HMM state
 - GMM-HMM
- HMM + GMM + additional bottleneck features created by Deep Neural Network



Maximize $P(W|A) = P(A|W) \cdot P(W) / P(A)$

i.e. P(A | W) is the acoustic model e.g. HMM and P(A) is a constant

Results

- Each use connects to the system using a smartphone application
 - Each user has a set of devices and their names
- A cloud API for speech recognition receives the voice commands
 - A subset of the speech data is used to train the model
- Choice of acoustic models
 - GMM-HMM
 - DNN-GMM-HMM

Results

• Speech recognition word accuracy

Language Model	Acoustic Model	Word Accuracy (%)
DHLM	GMM-HMM	83.2
DHLM	DNN-GMM-HMM	87.6
Generic SLM	GMM-HMM	68.8
Generic SLM	DNN-GMM-HMM	81

Results

Semantic accuracy

- A task is accurate when intent and device are recognized correctly
- Incorrect intent, yet correct device
 - "turn on the kitchen light" \rightarrow "turn off the kitchen light"
 - "set the temperature to 69° " \rightarrow "set the temperature to 65° "
- Correct intent, yet incorrect device
 - "turn the upstairs thermostat off" \rightarrow "turn the downstairs thermostat off"
- Task is accurate when both intent and device are recognized correctly

Acoustic Model	Intent Accuracy (%)	Device Accuracy (%)	Task Accuracy (%)
GMM-HMM	90.1	82.6	75.4
DNN-GMM-HMM	94.4	83.5	79.9

Conclusion

- Talking to an IoT device is an intuitive way to communicate with it
- Acoustic models and language models are used to bridge the gap between human and devices
- Personalized language models are necessary to have better accuracy in speech recognition process

