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Abstract

Markov decision processes �MDPs� provide an elegant mathematical framework for
modeling and solving planning and decision problems in the presence of uncertainty� While
MDPs can be solved in time polynomial in the size of the state and action spaces using
traditional dynamic programming techniques� for many practical problems these spaces
are too large to be explicitly enumerated� This has prompted considerable research into
various methods for accelerating and approximating the solution of MDPs� In this work� we
consider extensions of MDPs to temporally abstract actions ormacro�actions� that allow the
treatment of sequences of actions or local policies as primitive actions� We investigate two
models that exploit macro�actions� one in which macro�actions are used to enrich a set of
primitive actions and leave the state space unchanged� and a hierarchical �abstract� model

�



where macro�actions replace primitive actions� and an abstract state space is constructed�
with the potential to signi�cantly reduce the size of the MDP� We discuss several ways to
generate macro�actions in order to ensure good solution quality� Finally� we investigate the
use of macros in the solution of multiple� related MDPs� and demonstrate how this can
justify the computational overhead of macro generation�

�� Introduction

Markov decision processes �MDPs� ���� ��� �	 have proven tremendously useful as models of
stochastic planning and decision problems
 While MDPs can be solved in time polynomial
in the size of the state and action spaces using traditional dynamic programming tech�
niques� for many practical problems these spaces are too large to be explicitly enumerated

Thus� considerable research has been directed toward the solution of MDPs with large state
and action spaces through various speed�ups and approximations
 These include function
approximation ��� ��� �
� ��	� reachability analyses ��� �	� structured approaches ���� �� ��	�
decomposition ���	 and state aggregation techniques �
	
�

In this work we focus on an alternative approach to the computational di�culties asso�
ciated with classical MDP solution techniques
 We consider the use of temporally abstract
actions� or macro�actions� that allow one to apply a preselected �or precomputed� local
policy within the MDP� potentially alleviating certain computational bottlenecks associated
with solving MDPs
 A local policy or macro�action dictates behavior within a speci�c region
of state space
 This provides two computational advantages


First� given a set of macro�actions� and descriptions of their e�ects� an agent can deter�
mine quickly �in one step� the consequences of applying a macro� thus� avoiding substantial
reasoning with long sequences of primitive actions
 Second� by restricting the agent to
making decisions only at the boundaries of regions and to choosing only among the macro�
actions covering these regions� the burden of making decisions at each state of the MDP is
alleviated� leading to a much smaller abstract MDP
 This form of abstraction can be used
to generate a hierarchy of abstract MDPs� where the solution of more abstract MDPs is
used to direct the solution of less abstract MDPs


Our approach is motivated by classical planning in deterministic domains� where macro�
actions �i
e
� sequences of deterministic actions� are often used to accelerate the planning
or problem�solving process by reducing the �operator� distance to the goal state
 Macros
are often created by caching and reuse of parts of the solution for previously solved� related
problems ���� ��� ��	
 We will see similar bene�ts in the application of macros to MDPs

Another motivation for our model is the use of abstraction and hierarchical approaches
to planning
 In this work� one solves a hierarchy of planning problems on di�erent levels
of abstraction� starting from the highest abstraction level ���� ��� ��	� and using abstract
solutions to guide the solution of less abstract versions of the planning problem
 Similar
ideas have been applied to MDPs by Dearden and Boutilier ���	� but using a very di�erent
form of abstraction than that considered here


�� See the survey paper by Boutilier� Dean and Hanks ��� for a review of various approximation techniques�

�



Recent research has seen the application of temporally abstract behaviors in stochastic
settings emerge as an important method for tackling stochastic decision problems
 This
work has been quite diverse� adopting various guises and applied to many di�erent types of
decision problems
 For example� many researchers have investigated the role of hierarchies
and macros in the reinforcement learning setting ���� �
� �� ��� ��� ��� ��	� while others
have focused predominantly on planning problems ���� ��� �
� ��	
 The objective of this
work is the development of a basic framework for integrating macro�actions into stochastic
planning problems and for the generation of solutions using hierarchical techniques


The model we develop is based on region�based decomposition of MDPs� and �nds its
roots in the work of Dean and Lin ���	
 We use region�based decompositions to de�ne
sets of possible local policies �i
e
� macros� an agent can consider
 The main di�culty
in incorporating macro�actions into the standard MDP framework lies in the fact that the
execution of di�erent macro�actions may extend over di�erent periods of time
 To deal with
this problem� Precup� Sutton and Singh ���� ��� ��	 have developed multi�time models and
applied them to planning with MDPs
 Multi�time models allow one to represent �actions�
of di�erent duration uniformly within an MDP and to apply standard solution algorithms
such as value and policy iteration ��� ��	
 We draw heavily on these ideas� using multi�time
models to provide the basic semantics of macros


We consider two ways in which macros can be used to accelerate the solution of decision�
theoretic planning problems
 In the �rst model� the augmented MDP model� macro�actions
are simply added to the underlying MDP �i
e
� added to the set of primitive actions�
 This
model has been proposed by Sutton ���	� and studied in depth by Precup� Sutton� and
Singh ���� ��� ��	� who demonstrated empirically that a good set of macros can increase the
convergence rate of value iteration
 We show that� in fact� this improvement is not always
guaranteed� speci�cally� we demonstrate that convergence is sensitive to the value function
estimate used to initialize the value iteration procedure


Although the augmented model allows one to integrate macros into MDPs and speed up
their solution� it still relies on explicit dynamic programming over the original state space
�and a larger action space�
 Thus it does not address the most pressing computational
bottleneck
 The second model we consider� the abstract MDP model� requires an agent to
use only macro�actions and� most importantly� allows one to reduce the number of states
of the underlying MDP by restricting decisions to a subset of states of the original MDP

These abstract states are traversed using macro�actions
 The abstract model is particu�
larly well�suited to MDPs that exhibit a natural hierarchical decomposition �possibly with
multiple state and macro�action levels�
 It can be viewed as a stochastic counterpart of
the hierarchical approaches in deterministic domains ���� ��� ��	
 The abstract model we
propose is similar to those considered by Forestier and Variaya ���	� Kaelbling ��
	� and
Parr ��
� ��� ��	


Two key limitations of the abstract model relate to the solution quality of the policies
generated by solving an abstract MDP� and the computational overhead needed to gener�
ate a suitable set of macro�actions
 Since the policy obtained by solving the abstract MDP
consists only of macro�actions� certain behaviors cannot be realized
 Thus� the resulting ab�
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stract policy may be suboptimal when viewed from the perspective of the original MDP
 To
ensure high quality solutions� the set of macros used must provide an adequate �coverage��
that is� it must allow for a range of policies su�cient to include close�to�optimal behavior

In Section � we describe di�erent techniques for generating a set of suitable macro�actions


In many cases� a suitable set of macros can be provided by a knowledgeable designer�
who understands the domain well enough to constrain an agent�s decision space without
precluding good behavior
 In other cases� we may be interested in the automatic generation
of a macro set
 The time required to generate a reasonable set of macros can also be
prohibitive� generally requiring that we perform some form of dynamic programming within
speci�c regions of state space
 Since our regions cover state space� macro generation can be
computationally very expensive
 The challenge here is to adequately balance the trade�o�
between solution quality admitted by a set of macros and the time required to generate
that set
 The e�ect of this computational overhead can be diminished if we produce macros
o��line and use them on�line� or reuse the same set of macros to solve multiple problems

We also analyze the requirements for feasible macro reuse and propose two models for
doing this
 Thus the presence of macros can ensure fast on�line response to certain types
of changes in the original MDP speci�cation
 The use of macros for the on�line solution of
multiple related MDPs is one of the main advantages of our abstract MDP model


The paper is organized as follows
 Section � introduces the concept of macro�actions in
context of MDPs
 Section � explores two models that use macro�actions in the solution of
MDPs� the augmented and the abstract MDP models
 Methods for automatic construction
of good�quality macro�actions are the focus of Section �
 Section � presents two approaches
for reusing macro�actions in the solution of multiple related MDPs� locally revised abstract
MDPs and hybrid MDPs
 We conclude in Section � with discussion of some open issues


�� Macro�actions

In this section we develop a framework for the de�nition and investigation of macro�actions
grounded in the region�based decomposition of MDPs ���	 and the use of multi�time mod�
els ���� ��	
 We �rst present basic background on MDPs
 We then de�ne region�based
macro�actions� describe how one can construct suitable multi�time models for MDPs� and
then discuss one method for generating suitable macro�actions by solving a local MDP


��� Markov Decision Processes

A ��nite� Markov decision process is a tuple hS�A� T� Ri where� S is a �nite set of states� A
is a �nite set of actions� T is a transition function T � S �A� S � ��� �	� de�ning a family
of probability distributions over S for each s�� S� a � A� and R � S �A� IR is a bounded
reward function
 Intuitively� T �s� a� s�� denotes the probability of moving to state s� when
action a is performed at state s� while R�s� a� is the expected immediate reward associated
with executing action a at state s


Given an MDP� the objective is to construct a policy that maximizes expected accumu�
lated reward over some horizon of interest
 We focus on in�nite horizon� discounted decision
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problems� where we adopt a policy that maximizes E�
P�

t�� �
t � rt�� where rt is the reward

obtained at time t and � � � � � is a discount factor
 In such a setting� we restrict our
attention to stationary policies of the form � � S � A� with ��s� denoting the action to be
executed in state s
 The value of a state given a policy � satis�es ���	

V��s� � R�s� ��s�� � �
X
s��S

T �s� ��s�� s�� � V��s
���

A policy � is optimal if V��s� � V���s� for all s � S and policies ��
 The optimal value
function V � � S � IR is the value V�� of any optimal policy ��


Given a value function V � the Bellman backup operator produces an �improved� value
function V � as follows�

V ��s� � max
a�A

fR�s� a� � �
X
s��S

T �s� a� s�� � V �s��g� ���

We let HM � B � B �where B is the set of bounded� real�valued value functions over S��
denote this operator for a speci�c MDP M �we drop the subscript M when the MDP is
clear from context�
 The optimal value function V � � S � IR satis�es Bellman�s �xpoint
equation ��	�

V � � HV ��

A number of techniques for constructing optimal policies exist
 An especially simple
algorithm is value iteration ��	
 In this algorithm we compute a sequence of value functions
V i starting from an arbitrary V �� and de�ning

V i���s� � max
a�A

fR�s� a� � �
X
s��S

T �s� a� s�� � V i�s��g � �HV i��s� � ���

The sequence of functions V i converges to V � in the limit
� After some �nite number n
of iterations� the choice of maximizing action for each s forms an optimal policy �� and
V n approximates its value
 We refer to Puterman ���	 for a discussion of appropriate
termination criteria


��� Macro�actions as Local Policies

Macro�actions are used to model complex behaviors or collections of actions in an MDP

For example� the designer or programmer of a robot might provide typical or standardized
policies or programs� such as navigating a hallway� grasping an object� or even more complex
behaviors
 These prespeci�ed behaviors can be pieced together to form more complex
behaviors� or used as primitives in the robot�s planning process
 This perspective is quite
common
 In reinforcement learning� Thrun and Schwartz ���	 consider how an agent might
learn to reuse policy fragments or skills
 Parr and Russell ���	 propose using �nite�state
controllers to specify partial policies and make decisions about how best to piece these

�� Convergence follows from the contraction property of the mapping H ��� ����
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Room 1 Room 2

Room 3 Room 4

Figure �� �a� A four�room example� �b� Peripheral states for a room partitioning


together
 Boutilier� Reiter� Soutchanski� and Thrun ��	 propose a programming language in
which behaviors and policy constraints can be speci�ed� with an MDP solution procedure
again used to determine how best to use these behaviors in the planning process
 One
bene�t of using macros is the ability to exploit a programmer�s knowledge of the structure
of an optimal �or reasonable� policy
 If it is known that an agent should act using some
combination of the set of prede�ned behaviors� restricting attention to these behaviors can
signi�cantly reduce the complexity of the decision process an agent needs to solve


To illustrate this notion� consider the simple robot navigation problem in Figure ��a��
in which a robot can move in each of the four compass directions
 In addition to the basic
move actions� a programmer may have provided a set of macros �or programs� that enables
the robot to exit each of the rooms through each door
 The execution of a macro thus
consists of multiple steps involving multiple primitive move actions
� If the robot decides
that exiting a room through a speci�c door is appropriate at a given point in the process�
the relevant macro can be executed�the robot needn�t plan how to exit the room


Macro�actions can be modeled in many di�erent ways
 For example� macros can be
represented as programs with arbitrary termination conditions as suggested by Precup�
Sutton and Singh ���� ��� ��	 or using a �nite�state machine representation as proposed by
Parr and Russell ���	
 In our work� we de�ne a somewhat simpler macro�action model� in
which every macro�action is represented as a local policy restricted to some region of a state
space
 Formally� our model relies on a region�based decomposition of an MDP which �nds
its roots in the work of Dean and Lin ���	


De�nition A region�based decomposition � of an MDP M � hS�A� T� Ri is a partitioning
� � fS�� � � � � Sng of the state space S
 We call the elements Si of � the regions of M 

For any region Si� the exit periphery of Si is

XPer�Si� � fs� � S � Si � T �s� a� s
�� � � for some a � A� s � Sig�

The entrance periphery of Si is

EPer�Si� � fs� � Si � T �s� a� s
�� � � for some a � A� s � S � Sig�

�� Besides being given a priori by a programmer� macros can be constructed by reusing a solution obtained
for a related MDP� or generated in a systematic fashion by covering a certain set of possible agent
behaviors� We explore issues related to the automatic generation of macro�actions in Section ��
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We call elements of XPer�Si� exit states for Si and elements of EPer�Si� entrance
states
 The collection of all peripheral states is denoted

Per��S� � �ifEPer�Si� � i � ng � �ifXPer�Si� � i � ng�

Notice that the set of states in the exit periphery of some region correspond to the set of
states in the entrance periphery of some region
 Figure ��b� shows the set of peripheral
states obtained if we partition the problem of Figure ��a� into the four regions corresponding
to di�erent rooms


De�nition A macro�action for region Si is a local policy �i � Si � A


A macro�action is simply a local policy de�ned for a particular region Si
 Intuitively� this
policy can be executed whenever an agent enters or is in the region and terminates when
the agent leaves the region �if ever�
 In our example� the macro�action corresponding to
exiting a room through a speci�c door would dictate action choices at each state in that
room �e
g
� move in a direction that is expected to take the robot closer to the door�
 We
note that other de�nitions of macro�actions �e
g
� ���� ��	� are more general� allowing for
arbitrary starting and termination conditions� and non�Markovian policies


The main problem with integrating macro�actions into the MDP is that the execution
of macro�actions can extend over di�erent periods of time
 A key insight of Precup� Sutton
and Singh ���� ��� ��	 is that one can treat a macro�action as a primitive action in the
original MDP if one has an appropriate reward and transition model for the macro
 They
propose the following method of modeling macros


De�nition A discounted transition model Ti��� �i� �� for macro �i �de�ned on region Si� is
a mapping Ti � Si � �Si � A��XPer�Si� � ��� �	 such that

Ti�s� �i� s
�� � E���

��� � Pr�s� � s� j s� � s� �i���

�
�X
t��

�t�� � Pr
�
� � t� st � s� j s� � s� �i

�

where the expectation is taken with respect to time � of termination of �i
 A dis�
counted reward model Ri��� �i� for �i is a mapping Ri � Si � �Si � A� � IR such
that

Ri�s� �i� � E��
�X
t��

�tR�st� �i�s
t�� j s� � s� �i��

where the expectation is taken with respect to completion time � of �i


The discounted transition model speci�es the probability of leaving Si via a speci�c exit
state� similar to a standard stochastic transition matrix� with one exception� the probability
is discounted according to the expected time at which that exit occurs
 This clever addition
allows the transition model to be used as a normal transition matrix in any standard MDP
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solution technique� such as policy or value iteration ���� ��	
� The reward model is similar�
simply measuring the expected discounted reward accrued during execution of �i starting
from a particular state in Si


��� Computing Macro�action Parameters

The discounted transition and reward models are critical to our ability to treat macros as
if they were primitive actions within the MDP� as we will see in Section �
 We now discuss
how to compute transition and reward models� that is� the parameters needed to summarize
the e�ects of macro�actions


Let �i be a macro de�ned on Si
 The discounted transition probability Ti�s� �i� s
�� for

s � Si� macro �i and s� � XPer�Si� satis�es

Ti�s� �i� s
�� � T �s� �i�s�� s

�� � �
X
s���Si

T �s� �i�s�� s
���Ti�s

��� �i� s
���

This leads to jXPer�Si�j systems of linear equations� one set for every exit state s�
 Each
system consists of jSij equations with jSij unknowns
 The systems can be solved either
directly or using iterative methods
 Thus� the time complexity of �nding all transition
probability parameters is O�jXPer�Si�jjSij

��

We can construct the reward model in a similar fashion
 Let Ri�s� �i� be the expected

discounted reward for following the policy �i starting at state s � Si
 Then we have�

Ri�s� �i� � R�s� �i�s�� � �
X
s��Si

T �s� �i�s�� s
��Ri�s

�� �i��

This de�nes a set of jSij linear equations� which can be solved in O�jSij
�� time


Overall� the computation of macro parameters takes O�jXPer�Si�jjSij�� time per macro

Note that if a large number of macros per region is used� the cost paid for computing the
necessary parameters can easily outweigh the bene�t resulting from applying macro�actions
to solve the original MDP
 We discuss this in some depth in Section �


��� Local MDPs

As discussed above� we can view macro actions as behavior fragments provided by a pro�
grammer whose knowledge of the domain allows her to con�dently assert that this behavior
fragment could be used as part of an optimal policy
 Often� however� a programmer may
not know the precise behavior to be implemented within a region� but does know �or can
estimate� the value of leaving a region through each exit state
 By specifying the value of
the exit states of a region� a programmer permits the automatic construction of an optimal
local policy within the region� through the solution of a local MDP


�� Our de	nition of the discounted transition model is consistent with Equation �� while Precup� Sutton
and Singh fold the discount factor into the transition model� Thus their transition model is obtained by
multiplying our variable Ti by the constant ��






α

Region

Periphery

Absorbing
State

σ: Exit

Figure �� A Local MDP for Macro Generation

A local MDP for region Si provides the means for combining the rewards associated
with states within Si with �estimates of� the expected values associated with the region�s
exit states


De�nition Let Si be a region of MDP M � hS�A� T� Ri� and let � � XPer�Si� � IR be a
seed function for Si
 The local MDP Mi��� associated with Si and � consists of� �a�
state space Si � XPer�Si� � f�g� �b� actions� dynamics and rewards associated with
Si as in M � �c� a reward ��s� associated with each s � XPer�Si�� and �d� a single
cost�free action applicable at each s � XPer�Si� that leads with certainty to � �a
cost�free absorbing state�


A local MDP is depicted graphically in Figure �
 Solving Mi��� results in a local policy �i
whose behavior is optimal with regard to the seed function �


For example� if our programmer can estimate the value of leaving room � by each of its
two exits� she can assign those values to the exit states� solve the local MDP� and use the
resulting local policy as a macro�action for the original MDP
 If the states in the interior of
the room have a complex reward structure� or complex dynamics� it may be much simpler
to construct such behavior automatically by specifying seed values than by spelling out the
local policy directly


Using local MDPs in the fashion described above requires that the programmer have
some knowledge of the optimal value function for the underlying MDP� unless one speci�es
seed values that re�ect the true value of reaching an exit state� the local policy generated
may be arbitrarily far from optimal
 We will see in Section � how local MDPs can be used
to create a set of macro�actions that cover the space of �reasonable� behaviors when this
knowledge is not directly available


�� Solving MDPs Using Macro�actions

Suppose we have an MDP M and a set of macros de�ned for each region Si induced by
some state space partitioning �
 There are two ways in which macro�actions can be used
to accelerate the solution of M �

�



�
 The augmented MDP model ���� ��� ��	 treats macros as if they were new primitive
actions that can be used by the agent in the original MDP
 A new MDP is constructed
by extending the action space A with the set of macro�actions


�
 The abstract MDP model treats macros as the only actions available to the agent

An abstract MDP is formed from M by restricting attention to macro�actions and
peripheral states
 One of the main contributions of this work is the development and
study of a speci�c model of abstract MDPs
 The form of abstraction we investigate
has been studied by others as well ���� ��� �
	


We consider each of these models in turn


��� Augmented MDPs

The augmented MDP model is constructed by adding macro�actions �with their discounted
transition and reward models� to the original set of primitive actions
 Although the aug�
mented model uses discounted transition matrices for macro�actions and thus it is not a
classical MDP� it can be still solved using standard methods� such as value iteration
 Be�
cause all base level actions �those in A� are present� the policy found is guaranteed to be
optimal
 In addition� the presence of macros may enhance the convergence of value it�
eration� as demonstrated empirically by Precup� Sutton� Singh ���� ��	 and others
� This
happens because one �application� of a macro can propagate values through a large number
of states and over a large period of time in a single step
 Thus� by reducing the number of
iterations required by value iteration to reach convergence� macros in the augmented MDP
model o�er �potentially� signi�cant computational savings


However� the potential for enhanced convergence is not always guaranteed
 In this
section we prove that the convergence rate and the speed�ups are sensitive to the initial
value function estimate� thus the inclusion of macro�actions may not help in all cases

Interestingly� this is also the case if only optimal macros �i
e
� local policies for regions
formed by restricting a globally optimal policy to these regions� are used to enrich the
primitive action set


At �rst� it may seem that extending an MDP with macro�actions is always useful

However� there are situations in which a macro�action �even if it is optimal� never a�ects the
value of the value function during value iteration� in such situations� we pay a computational
penalty for adding the macro�action and derive no bene�t from it


Lemma � Let M and M � be MDPs such that M � di�ers from M only by having additional
actions� that is� AM � AM �� Then for any value function V such that V � V �

M �i�e�� V
upper�bounds the optimal value function for M�� HMV � HM �V �

Proof The value function for a state s obtained after a Bellman backup is

V ��s� � max
a�A

Q��s� a�


� We note that these savings do not necessarily account for the possible overhead associated with generating
macros and constructing an appropriate model for each macro� which will be the focus of the next section�
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where A is a set of actions and Q��s� a� is an action�value function de�ned as

Q��s� a� � R�s� a� �
X
s��S

T �s� a� s��V �s���

Then if AM � AM �� regardless of the transition and reward models associated with addi�
tional actions� it must hold that

max
a�AM

Q��s� a� � HMV �s� � max
a�A

M �

Q��s� a� � HM �V �s��

�

The above theorem is general and holds for arbitrary MDPs having this relationship�
whether or not the additional actions are macro�actions
 The result implies that the value
iteration procedure� when initialized with an upper�bound value�function estimate� is no
worse on the original MDP �with primitive actions only� in terms of the number of iteration
steps than on any augmented MDP
 As an update for an augmented MDP involves the
computation of more Q�functions �for both action and macro�actions� this choice also makes
the augmented model inferior in terms of the running time� as stated in the following
 �Recall
that the optimal value function for both an augmented MDP M � and the original MDP M
from which it is formed are the same
�

Theorem � Let M � be an augmented MDP formed from MDP M by the addition of a set
of macro�actions� If value iteration for both M and M � starts from the initial upper bound
V� � V �� then value iteration on M � converges no faster than value iteration on the base
model M �
Proof An augmented MDP converges to the same �xed point solution as the original MDP�
that is� V � � HMV � � HM �V �
 By Lemma �� the value function HM � is an upper bound
on HM 
 Also� both HM and HM � are isotone ���	
 Then� assuming that an initial value
function V� satis�es V � � V�� we obtain V � � HMV� � HM �V� after the �rst update step�
V � � H�

MV� � H�
M �V� after two steps and V � � H i

MV� � H i
M �V� in i steps
 Thus� the value

function obtained through value iteration onM is always better �closer to the optimal value
function� than that based on M �
 As the model augmented with macro�actions requires us
to compute Q�values for every macro�action� the method is clearly inferior and must lead
to slower running times
 �

This theorem suggests that one should not blindly apply value iteration to MDPs with
macro�actions as the potential bene�t and intended speed�up is not guaranteed
 To avoid
the suboptimal behavior one should always initialize the value function estimate with a
lower bound
 This choice makes macro�actions useful and has the potential to improve the
convergence rate


Theorem � Let M � be an augmented MDP formed from MDP M by the addition of a set
of macro�actions� If value iteration for both M and M � starts from the initial lower bound
V� � V �� then value iteration on M � converges no more slowly than value iteration on the
base model M �

��



Proof The proof is similar to the previous case
 Starting from the lower bound V� � V ��
knowing that HM � and HM are isotone contractions and that HM � upper bounds HM � it
must hold H i

MV� � H i
M �V� � V �
 Therefore the value function obtained using the value

iteration procedure for M � converges to the optimal value function no slower than value
iteration for M 
 �

Intuitively� longer and better macro�actions can provide better Q�values as compared to
primitive actions� thus in�uencing the convergence of value iteration more
 Note� however�
that starting from the appropriate bound is not su�cient to guarantee the actual speed�up
in terms of running time
 With an extended set of actions� the slowdown resulting from
the computation of additional Q�value updates for every macro may outweigh the bene�t
obtained by accelerated convergence


��� Abstract MDPs

To solve an augmented model requires explicit value iteration over the complete state space

Thus� despite its potential to speed up the convergence rate� it does not alleviate the problem
of large state space size
 To address this problem we develop an abstract MDP model


����� Defining Abstract MDPs

In the abstract model we consider only peripheral states and macro�actions connecting
them
 The advantage of this is that if the number of peripheral states and macro�actions
is small� the model leads to a much smaller decision problem� taking advantage of the
fact that� by committing to the execution of some macro� decisions need only be made at
peripheral states� not at states that lie strictly within a region
 Thus the planning process
can be performed more e�ciently as compared to the original problem
 We note that the
abstract model is closely related to approaches studied by Forestier and Varaiya ���	 and
Parr ���� �
	� as well as the �landmark� technique developed by Kaelbling ��
	


De�nition Let � � fS�� � � � � Sng be a decomposition of MDP M � hS�A� T� Ri� and let
A � fAi � i � ng be a collection of macro�action sets� where Ai � f��i � � � � � �

ni
i g is a

set of macros for region Si
 The abstract MDP M � � hS�� A�� T �� R�i induced by � and
A� is given by�

	 S� � Per��S� � �fEPer�Si� � i � ng�

	 A� � �iAi with �ki � Ai feasible only at states s � EPer�Si��

	 T ��s� �ki � t� is given by the discounted transition model for �ki � for any s �
EPer�Si� and t � XPer�Si�� T

��s� �ki � t� � � for any t 
� XPer�Si��

	 R��s� �ki � is given by the discounted reward model for �ki � for any s � EPer�Si�


The transition and reward models required by the abstract MDP are restricted to pe�
ripheral states and make no mention of states �internal� to a region
 Due to discounting in
T � these de�nitions do not describe an MDP� but they still preserve the Markov property�

��



Room 3 Room 4

Room 1 Room 2

Figure �� Abstract MDP for a four�room example
 Grey circles mark peripheral states of
the original MDP� i
e
� states of the abstract MDP
 The abstraction process is
recursive and one can reduce the complexity of an abstract MDP further using
the same decomposition mechanism� and creating a hierarchy of abstract MDPs


speci�cally� the discounted probability of moving from any entrance state to an exit state
for a given macro is independent of previous history
 Thus� we may use dynamic program�
ming techniques �value iteration� policy iteration� or even linear programming approaches�
to solve the abstract MDP


An example of an abstract MDP for our earlier four�room navigation problem is shown
in Figure �
 Regions are formed by the rooms and the peripheral states make up the abstract
MDP
 We assume macros exist that can take the robot out of any room through any door�
accounting for the connectivity of the abstract MDP
 The abstract MDP e�ectively reduces
the size of the planning problem to one involving only periphery states and macro�actions
allowing the robot to move from room to room


Abstract MDPs are particularly well�suited to modeling problems whose solutions natu�
rally decompose hierarchically
 In our running example� it is quite intuitive to view policies
abstractly as involving moves from room to room� while the moves within each room are
considered distinctly
 This form of abstraction is also amenable to multiple levels of abstrac�
tion� we can create a hierarchy of abstract MDPs� such that a higher level �more abstract�
MDP is de�ned in terms of states and macro�actions of a lower level abstract model
 In our
running example� we might further abstract the navigation problem by treating each �oor
of an o�ce building as a region at a higher level of abstraction� where its states are the less
abstract �but still� not primitive� rooms on that �oor
 In Figure �� for example� the most
abstract MDP on the right is produced by grouping rooms � and � and grouping rooms �
and � �perhaps because � and � are on the same �oor� as are � and ��
 Such an approach can
be viewed as a stochastic counterpart of the deterministic hierarchical planning methods

It represents a good alternative to a variety of approximation methods for solving large
MDPs


The main advantage of the abstract MDP M � induced by a given decomposition is
that it can be substantially smaller than the original MDP� especially if the problem can
be decomposed into a number of regions with relatively small peripheries
 Various agent

��



navigation problems of the type considered by Precup� Sutton� and Singh ���� ��	� for
example� are particularly well�suited to this form of decomposition


The primary disadvantage of the abstract model is that in order for it to be computa�
tionally advantageous� the decision maker can consider only a limited range of behaviors
�macros� and these need to be prepared in advance
 Unfortunately� one does not always
have su�cient understanding of a domain to be able to restrict the range of �reasonable�
behaviors to a small set for each region
 Thus� if a small set of macros is used� one runs the
risk of generating a macro�policy that is suboptimal when viewed from the perspective of the
original �non�abstract� MDP
 Therefore� the abstract MDP model is most useful when good
rather than optimal behavior is acceptable� or when strong a priori knowledge can be used
to restrict the set of macro�actions used in the abstract MDP
 In this sense it is best viewed
as an alternative to various approximation methods for solving large MDPs ���� �� ��� 
	


����� Solving Abstract MDPs

We call a policy �� � S� � A� for M � that maps peripheral states to macro�actions a macro�
policy
 Such a policy ��� when considered in the context of the original MDP M � de�nes a
non�Markovian policy �� that is� the choice of action at a state s can depend on previous
history
 In particular� the action ��s� to be executed at some state s � Si will generally
depend on the state se by which Si was most recently entered� ��s� � ���se��s�


Given an abstract MDP M �� its solution is the macro�policy produced by solving the
abstract MDP M � using any standard optimal policy construction algorithm� such as value
iteration or policy iteration
 The quality of the optimal macro�policy as compared to the
optimal policy in the underlying MDP depends critically on the macros being used
 We
discuss this issue in depth in Section �


One problem with macro�policies is that they do not dictate which macro�action to take
if the process begins at an arbitrary internal state s of some region Si
 Thus� we need to �rst
identify a macro most suitable for that internal state
 To do this� we rely on the parameters
Ri and Ti for each macro� which are computed prior to solving the abstract MDP
 Let V � be
the optimal value function for the abstract MDP �de�ned only on peripheral states�� s � Si
be an internal start state of the region Si� and Ai be a set of macros for Si
 Then the best
macro�action for an arbitrary state s is

�si � arg max
�i�A�

�
��Ri�s� �i� � �

X

s��XPer	si


Ti�s� �i� s
��V ��s��

�
�� ���

We refer to this approach as one�shot macro selection
 The approach determines the macro
with highest expected value at the initial state s and commits to that macro
 Notice that
selecting this macro is not computationally demanding
 This selection retains the spirit
of the abstract MDP approach� simply extending it to an macro selection at an arbitrary
initial state


��



����� Policy Refinement in Region Interiors

The solution to abstract MDP tells us how to act in di�erent states
 The optimal policy
based on an abstract MDP is non�Markovian with regard to the underlying model M � that
is� the choice of the action in an arbitrary internal state s depends on the state used to
enter the region or start state
 However� using the solution to the abstract MDP� it is
possible to construct a Markovian policy with respect to the M � that is� a policy that
associates actions with states in the interior of a region that is independent of how the
region was entered
 During this process� one can improve the value of the new policy as
compared to the original macro�policy
 This process is best viewed as a re�nement of the
abstract MDP model
 In the case of a hierarchy of abstract MDPs� the re�nement process
can run on multiple levels� starting from the most abstract MDP� and gradually removing
the dependencies on entrance periphery states in less abstract MDPs
 In the following we
consider two re�nement techniques


The �rst technique� greedy re�nement� is similar to the one�shot macro selection� but
allows one to apply di�erent macros at di�erent states within the region
 Speci�cally� the
agent can switch from one macro to another as it moves through the region�it need not
commit to the macro selected initially
 More precisely� let Si be a region� and for each s � Si�
de�ne �si as in Equation �
 The greedy re�nement of a local policy 	 � Si � A is given by
	�s� � �si 
 Thus at each state the action dictated by the best macro at that state is executed

The advantage of using such a policy is that it tends to improve control as compared to
committing to a single macro�action
 It is clear that the value of the policy obtained through
greedy re�nement of regions can be no worse than that obtained by following the macro�
policy
 We note that a similar idea has been investigated independently also by Sutton et
al� ���	


Theorem � Let �� � S� � A� be the optimal macro�policy obtained by solving the abstract
MDP� and V � � S� � R be the expected reward corresponding to such a policy� Then
� � S � A constructed using the greedy re�nement method seeded with values V �� satis�es
V ��s� � V��s� for all s � S��

The proof of the theorem is similar to the proof for the local MDP re�nement method
stated below
 A similar theorem �with a proof� appears also in Sutton et al
 ���	


The second method� local MDP re�nement� constructs a policy by solving a set of local
MDPs� one for each region� using the value function values V � obtained from the solution
of the abstract MDP as the seed values for exit states
 That is� at a region Si� we set
��s� � V ��s� for all s � XPer�Si��
 As with greedy re�nement� it is possible to show that
the new policy is no worse than the macro�policy� that is� it always yields higher or equal
expected rewards


Theorem � Let �� � S� � A� be the optimal macro�policy obtained by solving the abstract
MDP� and V � � S� � R be the expected reward corresponding to such a policy� Then
� � S � A constructed using the local MDP re�nement approach seeded with values V ��
satis�es V ��s� � V��s� for all s � S��

��



Proof Let Si be a region of S
 The local MDP re�nement method computes the policy
��i that is optimal in Si given the set of seeds �
 Thus� for all s � EPer�Si�� it must hold
that

V ��s� � V �
�i
�s��

In other words� the local policy always leads to expected rewards �for a given set of seeds�
that are no worse than the non�Markovian policy based on macros only
 As seeds used for
a local MDP correspond to values obtained by the optimal macro�policy and every local
policy found is no worse than the optimal macro choice for periphery state� the combination
of local policies �local polices are strung together� cannot lead to smaller expected rewards

Thus� the resulting global policy is no worse than the optimal macro�policy
 �

While both policy re�nement techniques guarantee the improvement over the macro�
policy� the questions of how these compare to each other and whether one re�nement strat�
egy produces a policy whose value dominates the other remain open
�

To illustrate the e�ect of re�nements in our running example� assume that we have
two macros that push the agent to exit room � via one of the two doors� and that the
expected value for exiting through each door is roughly the same
 Then� if the agent is
positioned closer to one door it should move toward that door by invoking the appropriate
macro�action
 However� if moves are highly stochastic� the agent� while attempting to exit
via one door� could be diverted closer to the other
 In that case it would be appropriate
to switch to a macro�action that takes the agent towards the other �closer� exit
 While
one�shot macro selection does not allow us to switch macros �the original macro�action
is always executed until the originally selected exit is reached�� the greedy strategy does
allow for policy switching
 The local MDP method allows one to construct a new local
policy� distinct from each of the macros� that could be loosely interpreted as allowing the
agent to �move to the closest exit
� Note that� while the computational e�ort of the region
re�nement is greater for the local MDP method� this MDP will still generally be quite small
when compared to the original MDP� since it involves only states in the initial region Si


��� Experimental results

To demonstrate the computational savings made possible by using macro�actions in planning
tasks� we have performed experiments on the simple navigation problem in Figure �
 These
experiments are merely suggestive �we consider more complicated domains below when we
study macro reuse�
 The agent can move in any compass direction to an adjacent cell or
stay in place
 The move actions are stochastic� so the agent actually moves in an unintended
direction with some small probability
 The objective is to maximize the expected discounted
reward �or minimize cost� incurred by navigating the maze� with each state� except the
zero�cost absorbing goal state� incurring some negative reward
 The rewards and transition
probabilities are not uniform across the maze


We compared the results of value iteration for the original MDP� the augmented MDP
and the abstract MDP� the latter two formed using the rooms in the problem as regions


�� We conjecture that there is no clear dominance between the two re	nement methods�

��



G

a. b.

Figure �� �a� Test problem Maze ���
 Shaded squares denote locations with higher cost�
patterned squares represent areas in which moves are more uncertain �a move in
the intended direction is less likely�
 Shaded circles denote absorbing states with
a �nite positive cost� G stands for a zero�cost goal state� �b� peripheral states for
the partitioning into �� rooms �regions�


The macros were formed heuristically using the simple strategy described in Section ��
giving jXPer�Si�j� � macros for every region Si
 Figure � shows how the estimated value
of a particular state improves with the time �in seconds� taken by value iteration on each
of the three models
 When the initial value function estimate is a lower bound both the
augmented MDP and the abstract MDP lead to faster convergence of the value function

In the augmented MDP� the ability of macros to propagate value through a large number
of states produces large changes in the value function in a single iteration step� overcoming
the increased number of actions
 Note� however� that when the initial estimate of the value
function is an upper bound� the augmented MDP actually performs worse than the original
MDP� as proved earlier


The abstract MDP has signi�cantly reduced the size of both state and action spaces

Although in general� macros can lead to suboptimal value functions �and subsequently
policies�� in our example� the abstract MDP produced nearly optimal policies �and did so
very quickly�
 The average time �in seconds� taken per value iteration step in this example
is ����� for the original MDP� ���� for the augmented MDP� and ����� for the abstract MDP

This re�ects the increased action space of the augmented MDP and the reduced action and
state spaces for the abstract MDP� as expected


While solutions obtained for the base level and augmented MDPs allow us to get the
optimal Markovian policies directly� solving the abstract MDP results in a non�Markovian
policy which uses macros and periphery states only
 A non�Markovian policy could be
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Figure �� Value function estimates versus time for various models
 Results with a properly
initialized value function �w
r
t
 the augmented MDP� are shown on the left
 Re�
sults for a poor initial function are on the right
 In the latter case� the augmented
MDP converges more slowly than the original MDP


converted into a Markovian policy using the local MDP re�nement method or the greedy
re�nement described above
 This allowed us to compare polices obtained for the original
MDP and abstract MDP methods
 In our agent�navigation example the Markovian policy
we obtained for the abstract�MDP solution via the local MDP re�nement turned out to be
equivalent to the optimal base�level policy
 The policy obtained via the greedy re�nement
method �best choice dictated by any macro�action� was very close to the optimal one� but
di�erent at a few states


�� Generating Macro�actions

Up to this point� we have assumed that the set of macro�actions used to improve the
ability to solve an MDP have been de�ned� speci�ed� and implemented in advance by the
designer or programmer of an agent� for example� standardized procedures for navigating
a hallway� exiting a room� and so forth may have been provided
 Generally� these assume
some knowledge of reasonable agent behavior on the part of the designer
 However� if these
are not known we might still wish to generate a suitable set of macros in order to enhance
our ability to solve an MDP
 In order to prove useful� an automatically generated set of
macro actions should� ��� ensure that good quality solutions to the underlying MDP can
be found� and at the same time� ��� require that the computational cost to generate the
multi�time models is� at least� compensated for by the savings in solving the new MDP
model


In general� a better set of macro�actions allows one to improve the convergence rate
of value iteration if the augmented MDP model is used� or to ensure that a good quality

�




approximation to the optimal �base�level� policy is obtained if solving the abstract MDP
model
 In this section� we focus largely on the problem of macro generation for the abstract
MDP model


It can be hard to guess the optimal or even a close�to�optimal set of macros directly

In order to ensure good quality behavior� one approach to macro generation is to ensure
that the set of macros generated for a speci�c region is diverse enough to span the range of
all reasonable behaviors
 The larger �and more diverse� the set of macros� the more likely
one is to �nd a macro policy whose value �w
r
t
 the original MDP� is reasonably close to
optimal
 However� increasing the number of macros per region also leads to a more complex
model which makes the abstract MDP somewhat more di�cult to solve� but� more critically�
makes macro generation more di�cult
 The key concern lies with our ability to generate
macro�action models �that is� their discounted transition and reward models Ti and Ri�
e�ectively
 The primary challenge is to come up with a small set of good quality macros�
and to ensure that the computational overhead associated with macro�model construction
does not exceed the cost of solving the original MDP directly


In the following� we investigate techniques for generating a good set macros that ensures
that good quality policies are found
 The question of ensuring that the computational cost
of macro generation pays o� is deferred to Section �


��� Policy Coverage Methods

A simple approach to constructing a set of macros for a region would be to consider all
possible local policies
 Such an approach ensures that all policies for a base�level model M
would be considered and hence it leads to the optimal base�level solution
 Unfortunately�
it would be also computationally very expensive� the number of possible macro�actions for
a region Si with jSij states and jAj primitive actions is jSij

jAj� which is exponential in the
number of actions
 Such an approach is unlikely ever to pay dividends


��� Value Coverage Methods

An alternative approach to macro generation is to construct local MDPs for each region�
and seed the local MDPs de�ned for each region with an estimate of the optimal value
function at the exit states for the region �this is the technique described in Section �
��
 If
it is known� for example� that exiting room � via one door has value � and exiting via the
other door has value �� the local MDP using these seed values could be solved to produce
the relevant macro for room �
 Macros so created would be part of an optimal policy


The main problem with generating macros using local MDPs is to chose periphery seeds
that most closely re�ect the true expected reward
 Intuitively� if we could seed the exit
periphery of each local MDP using a function � within 
 of the true value function at these
states� we could generate a single macro for each region� and �string them together� to
obtain an approximately optimal policy
 More precisely� we have�

Theorem � Let � � fS�� � � � � Sng be a decomposition of MDP M � and let V be the optimal
value function for M � Let A � �fAi � i � ng be a set of macro�actions such that each Ai

��



contains some macro �i generated by the local MDP Mi��i� where j�i�s��V �s�j � 
 for all
s � XPer�Si�� If M � is the abstract MDP induced by � using action set A� and V � is the
optimal value function for M �� then

jV ��s�� V �s�j �
�
�

�� �

for all s � S� �the abstract state space�� Furthermore� if � is a lower bound on the completion
time of all macros� then

jV ��s�� V �s�j �
�
��

�� ��
�

Proof The macro�action generated by an 
�optimal seed guarantees its expected reward
accrued within a region Si to be at most ��
 from the optimal local expected reward
 This
follows directly from the contraction property of the value iteration update with a discount
factor � � �
 The cumulative error resulting from an in�nite sequence of 
�optimal macros
is then less than or equal to ���

��� 
 This assumes that every macro stays in its region for
at least one step
 However� if we know that every macro stays in the region for at least �
steps� the discount factor �� can be used instead of �
 This once again follows from the
contraction property of the value iteration update for � steps
 �

The above error bounds for 
�optimal macros are very rough and more precise error
bounds are possible
 These are based on the idea of �e�ective� discounting of macro�
transitions rather than discounting based on the minimal macro�action length


De�nition Let Ti�s� �i� �� � XPer�Si� � ��� �	 denote discounted transition model for an
initial state s � Si and macro�action �i
 Then ��s� �i� �

P
s��XPer	Si
 Ti�s� �i� s

�� is
called an e�ective discount factor for state s and macro�action �i


In other words� the e�ective discount factor represents the discounting one would apply to
state s if a macro�action is treated as a single action� and transition probabilities sum to
one


Once the abstract MDP with 
�optimal macros is solved� the error for state s can be
bounded by an error function E � Si � R� obtained by solving the following system of
equations�

E�s� �
X

s��XPer	Si


Ti�s� �
s
i � s

��
�
�
�E�s��

	

where �si denotes a macro dictated by the macro�policy obtained by solving the abstract
MDP
 The right�hand side of the equation consists of two parts� the maximum error 

incurred within the region Si and the maximum error we can incur after we exit the region

Note that the e�ective discount factor is �hidden� in the discounted transition model Ti


The previous result indicates that knowledge of the �optimal� value function for an MDP
can give rise to good macros
 Unfortunately� such prescience is rare� if we knew the value
function� we would have no decision problem to solve
 However� this basic idea can be
extended to create a set of macros for a given region
 The value coverage technique requires

��



that one solve multiple versions of the local MDP for a given region� di�ering only in the
value seeds used
 The seeds � should cover the range of possible values the exit states take
under the optimal value function
 We often have heuristic knowledge regarding the range
of the value function at certain states� or constraints on its possible values
 It is precisely
this type of knowledge that comes into play when one imposes partial policies �say� in the
form of a control routine�
 Even some information of this type can be used to construct
a good set of macros that guarantees approximately optimal performance
 We consider
several methods for exploiting such knowledge


If one knows the range of the value function� this can be used to construct a set of macros
systematically
 For instance� when constructing macros for room � in Figure �� suppose we
know that the values of the two exit states lie between Vmin and Vmax


� Then in order to
generate a set of macros for room � that is guaranteed to contain a good macro� we can
use the 
�coverage technique� intuitively� for each of the two exit states� we consider values
that lie in the range �Vmin� Vmax	 spaced some 
 apart� that is� we consider a grid or mesh
covering �Vmin� Vmax	

�
 By constructing macros corresponding to optimal local policies for
each � lying on a grid point� we are assured that one such � is within �

�
 of the optimal
value function and that �assuming other regions have �good� macros from which to choose�
close�to�optimal behavior results when the abstract MDP is solved


The 
�coverage technique can be extremely expensive� given such a generic knowledge of
the value function� we will generate ��Vmax� Vmin��
�	

jXPer	Si
j di�erent seeds per region�
and for every seed we will construct a new macro corresponding to the optimal local policy

However� we can often do much better


First� the number of macros is usually smaller than the number of grid points covering
�Vmin� Vmax	
 Thus it is often more appropriate to search a local policy space
 One technique
for �nding a set of macros with 
�precision guarantees was developed recently by Parr ���	

This technique builds up a macro cache for a region incrementally� basing its decisions to
create a new macro on the �range� of values covered by the existing macro set
 Essentially�
only �useful� macros will be added to the set� in contrast to the 
�coverage technique �which
for various combinations of seeds might construct essentially the same local policy�
 Un�
fortunately� this method requires the solution of multiple linear programming problems for
every region� which may be computationally prohibitive and impractical as well
 However�
we conjecture that Parr�s method will generally provide a much tighter set of macros for a
given region than the 
�coverage technique
 Parr provides error bounds much like ours on
the quality of the optimal macro policy with respect to the underlying base�level MDP


Second� we can apply various forms of domain�speci�c knowledge
 For instance� the
values of several exit states for a region Si may not be known� but we may know that
these values are �approximately� the same �e
g
� they are equidistant from any rewarding or
dangerous states�
 This e�ectively reduces the dimensionality of the required grid
 Tighter
constraints on the value function can reduce the range of values that need to be tried

Furthermore� in circumstances where no reward can be obtained within the region� only

�� Bounds on the value function are easily obtainable using the maximum and minimum rewards�
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di�erences in the relative values of exit states impact the local policy� this too can reduce
the number of macros needed


��� Heuristic Macro Sets

The systematic coverage techniques �policy or 
�coverage� can be computationally very
costly to apply in practical settings
 Thus� unless tight constraints on the value function or
policy constraints are known� this can involve substantial overhead and� in many instances�
be unpro�table
 Heuristic methods for macro generation can alleviate this di�culty if they
require the construction of a small number of macros
 We propose a strategy �based in
part on the proposal of Precup� Sutton� and Singh ���	� that uses jXPer�Si�j � � macros
for every region Si� one macro per exit state leading the agent towards that exit� plus a
�stay�in�region� macro encouraging the agent not to move out of the region
 The set of
heuristic macros is generated by seeding a local MDP with appropriate values� using Vmax

for the target exit and Vmin for all other exits when generating the macro for a speci�c
target exit� and using Vmin values for all exits when generating the �stay�in�region� macro


In general� the above heuristic strategy assures that exits and potential goals within the
region will not be overlooked while planning at the abstract level
 Note� however� that this
technique does not guarantee that the necessary coverage will be obtained
 For example�
while implementing a policy to exit in one way� the agent may �nd itself actually �slipping�
closer to another exit due to uncertainty in its actions
 However� the policy will ensure
the agent persists in its attempt to leave as planned
 If both exit states have equal value�
forcing the agent to choose one or the other can be far from optimal
 Instead� we would like
to use a third macro that takes the agent to the nearest exit
 However� we cannot discard
the original macros unless we know in advance that the values are similar
 In addition�
unless one accounts for potential variability in the actual value assigned to an exit state�
sound decisions to stay within a region or leave it cannot be made


��� Iterative Macro Re�nement

In general� it is hard to generate a small set of good macros in one step
 This problem can be
alleviated by constructing a good set of macros gradually using iterative macro re�nement
techniques
 A simple re�nement strategy uses the value function produced by solving the
abstract MDP as seeds for an entirely new set of macros
 In particular� we choose an initial
set of seeds� generate a single macro per region� then solve the induced abstract MDP
 The
resulting value function is used as a seed to generate a new set of macros �again one per
region�� and the new abstract MDP is solved


This iterative macro�re�nement method is a special case of asynchronous policy itera�
tion ��	 and is in many respects similar to Dantzig�Wolfe decomposition techniques ���� ��	

The method guarantees that after every re�nement step the new macro�policy obtained by
solving the abstract MDP improves over the macro�policy used in the previous step and
eventually� it converges to the optimal policy
 This is captured in the following theorem


��



Theorem 	 The simple iterative macro�re�nement method converges to the optimal policy
and the new macro�policy obtained after the re�nement step is no worse than the previous
step�s macro�policy�

Proof The fact that the new macro�policy improves the previous step policy follows
directly from Theorem �
 Now we need to show that in the case that all local macros
remain unchanged in two consecutive steps the solution policy equals the optimal policy

Assume that this does not hold and that there is a policy that is better than the policy ��

found by the iterative re�nement method

 But then there is at least one state s for which
the current action choice dictated by the policy �� can be improved locally �as follows from
the policy improvement theorem used in the standard policy iteration technique�� i
e
 there
exist an action a such that Q�s� a� � Q�s� ���s��
 But this is a contradiction as such an
action would be found and incorporated into �� by solving the local MDP with the same set
of seeds
 Thus the policy found by the simple macro�re�nement method must be optimal

�

There are various modi�cations of the basic macro�re�nement method one can apply to
solve MDPs
 One such technique involves re�nement of the grid or mesh used to generate
seed values for local MDPs
 If knowledge of the value function is sparse� we may generate
a set of macros using a coarse grid for a certain region �thus generating few macros�
 The
abstract MDP can then be solved using these macros� and the abstract value function� with
error bounds determined by the coarseness of the grid� will generally provide substantially
improved knowledge of the true value function
 This can be used to generate new seed
values� with much �ner precision� over a greatly reduced range� which in turn can be used
to generate a small number of macros with greatly improved accuracy


In general� iterative macro�re�nement methods overcome the threat of poor initial seed�
ing �and the generation of poor macros� by gradually improving the macro set using infor�
mation as it becomes available
 This requires the repeated computation of a macro model
for every newly generated macro�action� which may limit their applicability


�� Multiple MDPs and the Reuse of Macros

Generating a set macro�actions and constructing their transition and reward models is
an intensive process� requiring explicit state�space enumeration
 In many instances the
overhead associated with this process will outweigh any speed�up macros can provide in
solving the underlying MDP
 Thus our hierarchical approach �or any approach requiring
macro model generation� may not be worthwhile as a technique for solving a single MDP


The main reason to incur the overhead of macro construction lies in the reuse of macros
to solve multiple related MDPs
 For example� in our running example� the robot may
have constructed a policy that gets it to the goal consistently� but at some point the goal
location might change� or the penalties associated with other locations might be revised�


� Note that the macro�re	nement method generates only one macro per region� which means that the local
policy is always the part of the solution�

��



or perhaps the environment �or the robot�s abilities� might change so that the uncertainty
associated with its moves at particular locations increases
 Any of these changes requires
the solution of a new MDP� re�ecting a change in reward structure or change in system
dynamics
 However� the changes to the MDP are often local� the reward function and the
dynamics remain the same in all but a few regions of state space
 For instance� it may be
that the goal location in our navigation example moves within room �� but no other part
of the reward function changes


Local changes in MDP structure can induce global changes in the value function �and can
induce dramatic qualitative changes in the optimal behavior�
 If macros have been generated
for a region such that they cover a set of di�erent behaviors� they can be applied and reused
in solving these revised MDPs
 However� there is one impediment to the application of
macro�actions to revised MDPs� namely� the fact that revising an MDP requires that the
local information �rewards or dynamics� for some region�s� must change
 For example� while
the macros developed for most regions �rooms� in our navigation problem can be reused�
those generated for room � do not re�ect the revisions in the rewards� and the goal location
and must be revised
 Our objective is to revise the model such that solution e�ciency and
quality is a�ected as little as possible


In this section� we investigate two models for reusing macros in the abstract MDP
setting� the locally revised abstract MDP method� and the hybrid MDP model


��� Locally�revised Abstract MDPs

One way to account for local changes in the reward and transition functions is to generate
a new set of macros for all regions in which the MDP has changed
 More precisely� for each
region in which the reward or transition function has changed� we �rst generate a new set
of macros using our macro generation technique of choice� create the macro parameters for
these new macros� then replace the actions in the abstract MDP with these newly created
macros to obtain a locally revised abstract MDP
 The process is illustrated in Figure ��a��
where changes in the dynamics or rewards in room � lead to changes in the macros associated
with that abstract state
 Formally� we have�

De�nition Let � � fS�� � � � � Sng be a decomposition of MDP M � hS�A� T� Ri� and
let M � � hS�� A�� T �� R�i be the abstract MDP induced by � and macro�action set
A � fAi � i � ng
 Let M � hS�A� T� Ri be a local revision of M with regard to
region Si� that is� T �s� a� t� � T �s� a� t� and R�s� a� � R�s� a� for all s 
� Si and all
a � A
 Let MC�Si� � fA��

i g be a set of macro�actions for the �revised� region Si
obtained through some macro�generation method
 The locally revised abstract MDP
M� � hS�� A�� T �� R�i with respect to M and MC�Si� is given by�

	 S� � S ��

	 A� � �fAj � A � j 
� ig � A��
i � such that �kj � Aj is feasible only at states

s � EPer�Sj�� and �ki � A��
i is feasible only at s � EPer�Si��

	 T ��s� �kj � t� is given by the discounted transition model for �kj � Aj � for any
s � EPer�Sj� and t � XPer�Sj�� and

��



(b) hybrid MDP(a) locally-revised abstract MDP

Room 1

Figure �� Two methods for adapting an abstract MDP to local changes


	 R��s� �kj � is given by the discounted reward model for �kj for any s � Sj 


The obvious advantage of using a locally revised abstract MDP is that for on�line com�
putations we do not have to modify macros for the regions that are not modi�ed
 The
drawback is that the computational cost �and delays� incurred during the generation of
the new set of macros for all revised regions may adversely a�ect the time required for the
on�line solution of the revised MDP
 Since the computational cost of this step depends on
the size of the macro set generated for all revised regions� it may easily outweigh the bene�t
of the reduced state space provided by the abstract MDP
 Typically� the approach is useful
and can signi�cantly improve on the base�level MDP if the newly generated macro sets
are small and provide adequate coverage� and the total number of peripheral states of the
abstract model is small compared to the number of states of the base�level model


��� Hybrid MDPs

An alternative approach to solving a revised MDP is to solve the problem in one step using
a hybrid MDP that combines both abstract and base�level states
 Intuitively� when the
dynamics �or reward function� in a speci�c region of the base�level MDP is revised� we can
solve the new MDP by retaining the macros for all unaltered regions� and simply re�solving
the base�level decision problem in the region that has changed
 The abstract MDP and
macros can be used to summarize all relevant information at the unaltered states
 We thus
end up with an MDP with base�level states from the altered region�s�� and abstract states
corresponding to the unaltered regions
 This is depicted graphically in Figure ��b�� where
again the dynamics have changed only within room �
 Formally� we have�

De�nition Let � � fS�� � � � � Sng be a decomposition of MDP M � hS�A� T� Ri� and let
M � � hS�� A�� T �� R�i be the abstract MDP induced by � and macro set A � fAi � i �
ng
 Let M � hS�A� T� Ri be a local revision of M with regard to region Si� that is�
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T �s� a� t� � T �s� a� t� and R�s� a� � R�s� a� for all s 
� Si and all a � A
 The hybrid
expansion M� � hS�� A�� T �� R�i of M � by M is�

	 S� � Per��S�� Si�

	 A� � �fAj � A � j 
� ig � A� where �kj � Aj is feasible only at states s �
EPer�Sj�� and a � A is feasible only at Si�

	 T ��s� �kj � t� is given by the discounted transition model for �kj � for any s �

EPer�Sj� and t � XPer�Sj� �j 
� i�� T ��s� �kj � t� � � for any t 
� XPer�Sj��

T ��s� a� t� � T �s� a� t� for any s � Si and t � S�� and

	 R��s� �kj � is given by the discounted reward model for �kj for any s � Sj�j 
� i��

while R��s� a� � R�s� a� for any s � Si


The hybrid MDP M�� constructed when the structure within region Si changes� consists of
the original abstract MDP with the abstract states in EPer�Si� replaced by the region Si
itself
 We note that this expansion is easily de�ned for changes in any number of regions as
well as for a hierarchy of abstract MDPs


Hybrid MDPs have a considerable advantage over the base�level MDP when real�time
response is required to changing circumstances
 Given a new MDP Mi that di�ers from
the original MDP M in a single region Si �or� more generally� some small set of regions��
this new problem can be solved using a hybrid MDP of size jS�j � jSi � EPer�Si�j �recall
S� is the set of peripheral states� or states in the abstract MDP�
 For example� if an MDP
is partitioned into k regions of roughly uniform size� and the average size of the entrance
periphery of any region is p� then a hybrid MDP with one expanded region has roughly
kp � jSj

k
states
 Without the use of macros and abstract�hybrid MDPs� the solution of a

new problem requires value or policy iteration over the entire state space of size jSj
 Thus
a new problem can be solved much more quickly as compared to the base�level MDP
 In
addition� the derived policy on Si can be cached as a macro�action to be used in the future
when the MDP changes in a di�erent region


��� Experimental results

To illustrate the potential of macro�actions to accelerate the solution of multiple� related
MDPs� we compared solutions times for base�level MDPs with both the locally revised
abstract MDP and the hybrid MDP on three sequences of related problems
 We examined
three agent navigation problems of increasing complexity� shown in Figure �� Maze �� with
�� states and � regions� Maze �� with �� states and � regions� and Maze ��� with ��� states
and �� regions
 In each instance� the underlying MDP was modi�ed locally by changing the
goal� represented by a zero�cost absorbing state �this required changes to both the dynamics
and the reward model�


Table � summarizes results obtained for a sequence of �� problem instances �with dif�
ferent randomly selected goal states� and four di�erent solution methods� ��� solving the
base�level MDPs for each instance� ��� solving the locally revised abstract MDPs for each
instance� using one macro�action for the revised goal region� ��� solving the locally revised
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MAZE 121MAZE 66MAZE 36

Figure �� Problems used to test the bene�ts of macro�reuse
 Circles denote peripheral states
assumed by the hybrid�MDP method


abstract MDP for each instance� using full heuristic macro�coverage �from Section �� in the
revised region� and ��� solving the hybrid MDP for each instance


Each region Si in the abstract MDP is covered initially by a heuristic set of macro�
actions �containing jXPer�Si�j�� macros�� as described in Section �
 The macro set and its
parameters were computed o��line
 The delay columns in the table list the times it took to
compute the initial macro set for all abstract methods
 Only the local revisions to models
�due to the changes in the goal location� a�ected the on�line computational cost
 These are
summarized in average time entries in the table


To illustrate the dependency between the number of macros in a revised macro set and
the on�line computational cost for generating such set� we used two versions of the locally
revised abstract MDP approach� one in which the revised goal region Si was always covered
using full heuristic coverage with XPer�Si� � � macros� and the other in which only the
�stay�in�region� macro was used
�

To solve an MDP �whether it is a standard� abstract� or hybrid MDP� we used value
iteration
 As an initial value function estimate for the revised models� we always choose
the solution for the original MDP
 The iteration was stopped dynamically whenever the
precision of �
�� cost units was achieved


The results illustrate that the two reuse models� given a set of suitable macros� can solve
new problem instances much more quickly than the MDP with the original state and action
spaces �compare average time entries in the table�
 We also see that the savings o�ered by
both models are greater for larger problems� exactly as expected
 This is due to the fact
that local changes a�ect a signi�cantly smaller proportion of the original model in larger
MDPs than in smaller MDPs
 For both macro�reuse models this means that most of the

�� Since we want to solve a sequence of goal achievement tasks� a �stay�in�region� macro from our heuristic
coverage is the macro that encourages the agent towards the goal most and thus re�ects best our inten�
tions� All other macros in the heuristic coverage� in addition to the goal� try to press the agent towards
one of the exits� Thus we always choose the �stay�in�region� macro to de	ne the one�macro coverage in
our experiments�
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MDP Maze �	 Maze 		 Maze 
�

model delay av�time AEC delay av�time AEC delay av�time AEC

base � 
��� 
��	 � ��	
 ��

 � 
��� ���	
revised abstract 
�
� ���
 	�
� 
��	� 
��� ���� ����� ���
 
����
�
 macro�
revised abstract 
�
� 
�
� 	��	 
��	� ���� ���
 ����� ���� 
����
�heur� coverage�
hybrid 
�
� ���	 	��
 
��	� ���� ���� ����� ���� 
����

Table �� Results obtained by standard MDP� revised abstract MDP and hybrid MDP meth�
ods on �� randomly selected goals and three navigation problems
 The delay �in
seconds� measures the time spent to prepare the initial set of macro�actions� av

time is the average time �in seconds� to obtain the solution for the revised model
�with the same precision stopping criterion�� AEC measures the solution quality�
and is computed by averaging expected cost over all peripheral states and task
instances


MDP model Maze �	 Maze 		 Maze 
�


revised abstract �
 macro� 
� 

 
�
revised abstract �heur� coverage� � � �	
hybrid �� �� ��

Table �� Amortization thresholds for sequence of related problems on three maze problems

The threshold re�ects the number of tasks one has to solve to beat the sequence
of the base�level MDP tasks


structure of the abstract MDP is preserved and only the regions in which the change has
occurred are elaborated


Generating a set of initial macros for both of the reuse frameworks can be quite costly as
witnessed by initial delays in Table �
 However� if the primary macro construction process
is performed o��line� this delay may be unimportant in relation to the improved ability
to solve new problem instances quickly
 Alternatively� the initial delay can be justi�ed
when the computational cost could be amortized over multiple problem instances
 Table �
illustrates the average number of tasks we have to solve so that the reuse method would start
to dominate in terms of the total solution time �counting both the initial macro�generation
delay and time to solve n tasks�
 For example� the hybrid MDP improves on the base model
after ��� ��� and �� tasks are solved for Maze ��� Maze ��� and Maze ���� respectively
 The
situation is slightly di�erent for the revised abstract model with the full heuristic macro�
coverage� the on�line revision is too costly for the �rst two problems and it starts to pay
o� only on Maze ���
 Notice that the amortization threshold �the number of tasks after
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which the initial macro preparation delay �pays o��� decreases with the problem size for
the revised abstract model and increases very slowly for the hybrid model� even though this
sequence of problems is such that a more complex maze has roughly double the state space
size of its predecessor
 This trend is very promising for the application of macros in very
large domains with multiple related tasks


The results in Tables � and � illustrate� in addition to the computational advantage of
macro�action reuse� a spectrum of multiway trade�o�s among di�erent models
 A relatively
straightforward one is the explanation of the e�ect of macro�coverage complexity on the
solution time of the revised abstract MDPs
 Simply� solutions are slower if a more complex
macro�coverage is used for a modi�ed region
 This can be seen by comparing average running
times for solving the revised abstract model through single�macro versus full heuristic macro�
set approaches


Relations between the revised abstract and hybrid models and analysis of their advan�
tages are much harder to characterize
 Notice� for example� that the di�erence in solution
time between the hybrid and revised abstract approach with the full heuristic coverage
shrinks from Maze �� to Maze ���
 This phenomenon can be explained by the addition
of two large rooms with small peripheries to the Maze �� layout
 In the case of the hy�
brid model� the addition of large rooms increases the size of the state space of the hybrid
MDP we have to solve whenever the goal is in one of these rooms
 In contrast to this�
a small number of peripheral states and sparse heuristic macro�coverage of the modi�ed
region lead to� ��� smaller on�line delays for computing the new set of macros of the revised
region� and ��� much simpler revised abstract MDPs with smaller number of states
 More
generally� the on�line solution of the revised abstract MDPs is a�ected by�in addition to
the obvious parameters� like number of states and actions�the number of peripheral states
of the region together with the precision of the coverage
 On the other hand� the hybrid
model is independent of the number of peripheral states� as well as any on�line precision
parameters
 Thus� one should expect the revised abstract model to perform better in cases
in which modi�cations involve regions with a small number of peripheral states �they lead
to a smaller macro�coverage� and small state spaces
 On the other hand� the hybrid model
should do better if regions are small and their peripheries are larger


In terms of the solution quality� the two frameworks used in our experiments rely on
a heuristically generated set of macros
 Although� the macro set is relatively small� it
performed quite well on the set of maze navigation problems we tested
 This is documented
by comparing AEC scores� measuring average expected cost for all peripheral states and for
�� randomly generated goal tasks
 The slight increase in the cost score for larger problems
is caused by an increase in distances between peripheral and possible goal states


Analyzing and quantifying the trade�o�s among di�erent reuse models exactly and ahead
of time is a hard task
 It is also possible that for the same initial MDP� the revisions in one
region are better handled by one reuse approach� while the other reuse approach is more
convenient for the other region
 Since it is hard to guess which modi�cation is better in
advance we can make our choice only after we learn more about possible solutions
 Simply�
by solving a sequence of related planning tasks we can �rst obtain an estimate of solution
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times for each modi�ed region and for both revision methods� and then choose the one with
the best solution time
�� In a similar way� we may obtain estimates of the solution quality
for each region and technique and combine these with solution�time estimates for the best
cost�bene�t revision approach


�� Conclusions

We have analyzed two possible models for solving MDPs using macro�actions� the aug�
mented MDP model� in which the set of actions is enhanced by a set of macro�actions
representing a local policies� and the abstract MDP model� in which only macro�actions are
used during planning
 The augmented MDP does not reduce the size of the state space�
instead reducing the number of iterations one needs to solve an MDP by allowing values
to propagate more quickly to distant states
 The abstract MDP works with macro�actions
only and allows one to reduce signi�cantly the size of the state space by restricting decision
making to the peripheral states de�ned by a region�based decomposition of the MDP� and
restricting choices to the set of macro actions
 The abstract approach forms the basis of
various hierarchical MDP solution techniques
 Its main de�ciency lies in the fact that con�
trol may be suboptimal due to the restrictions on behavior dictated by macro�actions
 We
have elaborated conditions and macro construction techniques that provide guarantees on
solution quality
 Within this model� anytime tradeo�s can be made rather easily
 Further�
more� with the locally�revised abstract and hybrid MDPs we have techniques that allows
macros to be reused to solve multiple MDPs� providing for fast� on�line decision making�
and allowing macro construction costs to be amortized over many problem solving episodes


There are a number of questions and open issues that remain to be addressed and
many interesting directions in which this work can be extended
 For example� apart from
the handcrafted decompositions we used� one can imagine several strategies for automatic
decomposition
 There are multiple tradeo�s that need to be considered in such a case� larger
regions often lead to smaller peripheries� which result in smaller abstract MDPs �which in
turn can be solved more readily�� and increase the odds that a revision of the MDP will
be localized to a small number of regions� smaller regions� in contrast� allow macros to be
generated more quickly when revisions are required
 A systematic investigation of tradeo�s
is needed
 When solving multiple MDPs with a known distribution over problem instances�
the savings associated with macro reuse adds another dimension to the problem of automatic
partitioning� if we have information pertaining to the ways in which system dynamics and
reward functions may be revised� we�d like to exploit it in forming our decomposition of
state space and the associated macro�actions
 One method for automatic construction of a
multi�level hierarchy is explored by Moore� Baird� and Kaelbling ���	� for the special case
of a domain in which the only problems to be solved are navigation problems with the
objective of getting from one location to another as quickly as possible


��� The idea of adaptive adjustment becomes harder and may not work if modi	cations a�ect many regions
at once� In that case� it may not be feasible to remember statistics for all possible combination of regions�
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Other interesting direction is related to the use of compact MDP representations �e
g
�
Bayesian network representations� to form decompositions and to solve local� abstract and
hybrid MDPs
 Related is the issue of compact representation of macros and macro models
without explicit enumeration of the state space
 Dietterich�s MaxQ method ���	� for ex�
ample� is able to use di�erent state�space approximations in di�erent regions of the state
space


As well as generalization over similar states within a region� we may also be able to
exploit generalization over similar regions� for instance� after learning a policy to navigate
through a room and out a door� it might be possible to apply it to navigating out other doors
of other rooms
 Such generalizations will hinge on appropriate representations of the state
and actions spaces within regions� so that their commonalities are revealed
 However� if this
type of generalization is possible� it can justify the computational expense of �automatic�
macro generation even in a single MDP� since the creation of macros may require local
optimization only over a small subset of state space� with macros created for certain regions
applied with suitable modi�cations to other regions


Hierarchy and abstraction play a crucial role in human planning and an increasingly
important role in automatic planning
 This paper has explored the use of abstraction in
time �macro actions� and in space �regions� to increase e�ciency of planning in uncertain
domains
 The time taken to form an abstraction is usually only warranted in the case in
which it can be re�used� but we believe that this is the typical situation in most planning
domains
 There are many further re�nements and extensions that can be made to this
approach� they will be necessary before we have a truly practical method for solving very
large uncertain planning problems
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