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Summary. Biometric data can provide useful information about the person’s over-
all wellness. However, the invasiveness of the data collection process often prevents
their wider exploitation. To alleviate this difficulty we are developing a biometric
monitoring system that relies on nonintrusive biological traits such as speech and
gait. We report on the development of the pattern recognition module of the system
that is used to filter out nonsubject data. Our system builds upon a number of
signal processing and statistical machine learning techniques to process and filter
the data, including, Principal Component Analysis for feature reduction, the Naive
Bayes classifier for the gait analysis, and the Mixture of Gaussian classifiers for the
voice analysis. The system achieves high accuracy in filtering non-subject data, more
specifically, 84% accuracy on the gait channel and 98% accuracy on the voice sig-
nal. These results allow us to generate sufficiently accurate data streams for health
monitoring purposes

1 Introduction

This research is a part of the ”Nursebot Project”, which aims to develop a
mobile robotic assistant for elderly people who are at risk of institutionaliza-
tion in order to allow them to maintain independence for as long as possible.
The goal of this part of the project is to monitor their wellness, detect any
relevant change, and report it to the health care professional. Some people
are sensitive about intrusion into their life, therefore, we would like to collect
the data inconspicuously. The passive monitoring of wellness will give a better
idea of a patient’s condition to doctors and nurses.

People have always used biological traits, such as voice, face, gait, etc. to
recognize each other. Biometrics emerged as an automated method of iden-
tifying individuals or verifying the identity of a person based on distinctive
physiological or behavioral characteristics. It is natural to extend biometric
analysis systems so that they assess a person’s wellness by his/her behavioral
and/or physiological traits. The non-intrusion constraint limits our choice of
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biometric traits mainly to behavioral ones. Our research develops solutions
based on two of them: voice and gait.

Passive biometric monitoring in a real-world environment raises one im-
portant problem. Data collected by the sensors will include readings from all
individuals who enter and leave the environment and will not be always gen-
erated by our target subject. Thus, it is very important to filter the data so
that only the target subject is monitored and ”biometric noise” from other in-
dividuals is rejected. The problem of filtering of non-subject data is related to
the problem of machine recognition of human subjects, but there are several
important differences. First, we can tolerate a large number of ”true-reject”
errors. That is because we deal with a long term monitoring of the subject,
and low effective sample rate is not an issue for our system. Second, the sen-
sors are placed in the environment in which we expect the presence of a rather
limited number of people, e.g. family, friends, and caregivers. That puts an
upper bound to a number of people our system detects besides the subject.

The filtering system described in this paper uses data from three sen-
sors: two microphones and an accelerometer. One of the microphones and
the accelerometer are used to collect data about the person’s gait, and the
other microphone is used to monitor vocalizations. The analysis consists of
three steps: (1) feature extraction and reduction, (2) learning of discrimina-
tory patterns and (3) filtering. In the first stage, the dimensionality of the
data is reduced to a reasonable size that facilitates further analysis. In the
learning stage the features are used to extract discriminatory patterns from
labeled signal samples. The patterns use information from all three sensors.
Filtering of the signal exploits the patterns learned and applies them to the
continuous stream of data to identify the target subject.

In the following section we describe the underlying model and methods
used in our system. Next we present the results of experiments with filtering
of subject data. Finally, we give the summary in Sect. 4.

2 Model Description

2.1 Gait Analysis
Data Acquisition and Feature Extraction

Our system analyzes gait data collected from a piezoelectronic accelerometer
and a microphone at sampling rate of 20KHz. The most significant footstep
for each pair of "raw” signals is extracted by detecting the largest peak and
taking NV = 10000 data points in its neighborhood. Further processing is done
in spectral domain. We take discrete Fourier Transform of the signal, then we
use an ideal lowpass filter with a cutoff frequency of 4KHz.

Next we have to reduce our feature dimensionality, since it would be
computationally hard to work with 2000 features per sample. One of the
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widely used dimensionality reduction methods is Principal Component, Anal-
ysis (PCA). PCA performs linear transformation that aligns the transformed
axis with the directions of maximum variance (cf. Jolliffe, 2002). Principal
components are eigenvectors of the covariance matrix of samples, taken in
decreasing order of corresponding eigenvalues, i. e. the first principal compo-
nent is an eigenvector corresponding to the largest eigenvalue of the (sample)
covariance matrix. The first few dimensions of PCA transformed data contain
most of information about the data. We keep the first 30 features for each of
the samples as our main features for classification purposes.

Classification and Fusion

We use the Naive Bayes model to separate the main subject from the rest (cf.
Domingos and Pazzani, 1997). We compute the posterior probability of the
subject given the feature vector x:

Plwilx) = p(X|L;Z(i(])D(wl)’ (1)

and use it to discriminate between the subject class and the impostor class.
The conditional density function p(x|w;) is modeled by a multivariate normal
density. We make the naive assumption that features are independent given
the class, thus

p(x|ws) = p(a1|wi)p(z|wi) . .. pan|ws). (2)
We apply the maximum likelihood principle (cf. Duda et al., 2001) to estimate
the parameters of density functions.

The above mentioned data processing has been done for samples from each
channel (vibration from accelerometer and audio from microphone) indepen-
dently from the other channel. The central issue of this research is to combine
data collected from different sensors (cf. Brunelli and Falavigna, 1995; Hong
et al., 1999) in order to obtain a better model of the patient’s condition.

We build a logistic regression model (cf. Duda et al., 2001) for the fusion
of vibration and audio data characterizing the gait. The model uses a set
of adaptive weights that determine the importance of audio and vibration
signals. The results from the Naive Bayes model are supplied as four inputs
to a sigmoidal unit. We employ the online gradient decent approach for weight
optimization (cf. Haykin, 1999):

Wit1 = Wi + pr(yr — f(Wr,ar))ar, (3)
where wy, is the weight vector, a; is the input vector, yy is the desired output,
and p is the parameter that scales the gradient update.

2.2 Voice Analysis
Cepstral feature extraction

Speech spectrum is one of the best known characteristics of a speaker (cf. Atal,
1976). Therefore we proceed with frame-based spectral analysis as described
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in (cf. Reynolds and Rose, 1995). We build the spectrogram of the speech
signal by taking the short-time Fourier Transform with a Hamming window
of length 25.6 ms (N = 512). Next we apply mel-scaled filterbank (cf. Stevens
and Volkmann, 1940) of 29 overlapping triangular filters to the spectogram
magnitude. We obtain the cepstral coefficients ¢,,(n) by taking the discrete
cosine transform of the logarithm of the filterbank output. Cosine transform
helps to decorrelate the data, and thus reduces its dimensionality. Finally, we
form our feature vector from 12 cepstral coefficients. This process is repeated
every 12.8 ms, producing about 78 feature vectors per second.

Gaussian Mizture Model

Human speech is a complex audio signal, and due to phonetic diversity it
would be extremely hard if not impossible to come up with a simple paramet-
ric density model that effectively characterizes the speaker. So it is natural
to describe it as a mixture of several density of functions. Gaussian Mixture
Model was shown to be quite successful in solving speaker and speech recog-
nition tasks (cf. Reynolds and Rose, 1995; Gopinath, 1998).

The density function of the Gaussian mixture with m components is given
by

M
p(x|0) = Z Win f(X|pms X)), (4)
m=1
where x is a feature vector, wy,’s denote the mizing weights and f(X|tm, Xm)
are multivariate Gaussians. The parameter 6 consists of weights, means and
covariances of all component densities.

We use the training data for the target speaker to estimate the mean
vectors, weights, and component densities for his/her model. In our model
each Gaussian component has a diagonal covariance matrix. We proceed with
parameter estimation using the Maximum Likelihood principle. Direct com-
putation of parameters is not possible due to their nonlinearity. Therefore,
we estimate the parameters iteratively using the Expectation Maximization
(EM) algorithm (cf. Dempster et al., 1977).

Identification is performed by using the Bayes rule and comparing the
posterior probabilities of the mixture model for the target person with the
mixture model for the rest of the subjects. The details about our experimental
data and preliminary results are discussed in the next section.

3 Experimental Results

Gait Analysis

We conducted our gait identification experiments on data collected from 22
people. For each person there are 10 audio and vibration recordings, collected
in 10 different sessions. However for the target person there are 50 recording.
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Based on signal to noise and classification analysis of window length we
have set the length of our window of interest at N = 10000. The mean signal to
noise ratio averaged over the window of interest is equal 2.49 dB for vibration
signal and 5.67 dB for audio signal.
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Fig. 1. PCA analysis of impostor and target data. Vibration signal is on the left,
audio signal is on the right. The solid line is the standard deviation per dimension
for the target subject, the dashed line is the standard deviation per dimension for
non-target subjects

The impostor model in out system is based on data that has been deter-
mined to be not from the target subject. We have made preliminary statistical
analysis of our data in order to justify the choice of our impostor model. We
performed PCA on 50 samples from the target subject and on 50 samples
from five non-target subjects. As it can be seen from Fig. 1, the PCA trans-
formed data for mixture of subjects displays more variability than the data
for a single subject.

Table 1. Averaged confusion matrix of gait recognition by integrated system of
audio and video channels

Actual
Target Impostor
Accept 4.44% 1.28%
Reject 14.79% 79.49%

Prediction

We could identify the target person by his/her gait with about 84% accu-
racy, using combined data from audio and vibration channels. The averaged
confusion matrix of person recognition by gait based on 30 iterations, and
30%-70% split of data into testing and training sets for each iteration is shown
in Table 1.

It is clear from the ROC curves shown in Fig. 2 that by integrating the
channels we have improved recognition rates. We can tolerate high false-reject
rate, since in our specific case of strong verification problem we are mainly
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Fig. 2. ROC curves: the sold one is the integrated classifier, the dashed one is the
vibration channel only, and the dotted one is the audio channel

interested in low relative false-accept rate, which we define as the ratio of
false-accepts to a total number of accepted samples. That is because we are
conducting long term monitoring, thus we have access to very large amount
of subject data. Therefore we can reject a lot of subject data as long as we
keep some (in this case about one-fifth). However we would like to include as
few non-subject features in our training set as possible.

The preliminary results show that the relative false-accept rate is 22.38%
which is somewhat high. That can be explained by the relatively small amount
of testing data, so that in this case only one (0.0128 x 78 = 0.998) falsely
accepted feature greatly impacts relative false accept rate. We expect the
false-accept rate to drop significantly once we collect a larger body of data
and the voice channel is integrated with the gait subsystem.

Voice Analysis

Voice recognition was performed on speech data collected from 7 people. Each
recording is about 1 minute long. We used 10 seconds of each recording for
training purposes, and we tested our model on the remaining parts.

E)

B E) 0 = ) 19 o ®
seconds seconds

Fig. 3. Posterior probabilities of the target subject’s test data (left) and impostor’s
test data (right) computed with target subject’s model (solid line) and the impostor
model (dashed line)
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It can be seen from the graph (Fig. 3) that we are able to verify our target
subject with about 10 seconds of speech data. As it was expected, the longer
speech sample we are given the more reliable is the authentication. The speech
was recorded in a relatively noise-free environment. Because of the low number
of subjects and the controlled conditions, person identification using Gaussian
Mixture Model was near perfect (over 98% accuracy). We used a mixture of
five Gaussians in our subject model. Figure 4 shows the projections of those
models into 3D space.

Fig. 4. Projections of twelve-dimensional mixtures of Gaussians into 3D space. The
target model is on the left, and the impostor model is on the right

In general the accuracy results deteriorate with the number of people in
the environment and the background noise. However, in an eldercare environ-
ment, the universe of individuals likely to come in contact with the subject
is limited, typically consisting of family members and a small population of
caregivers. Therefore, good accuracy results in our experiments are likely to
be reproduced in real-world settings.

4 Summary and Future Work

We have built subject filtering module for our multimodal system for biometric
analysis that relies on data from two audio and a vibration channel. We have
shown that strong person verification can be performed using multimodal bio-
metric system based on voice and gait. Our gait analysis subsystem indicates
that the performance of the system improves by implementing information
fusion of audio and vibration channels.

We introduced a novel approach in the gait recognition, namely the one
based on audio and vibration of the foot impact with the floor. The prelimi-
nary results show that it is informative enough for our verification task.

The recognition accuracy of the voice channel was very high, though it
could have been a result of a small data set and low-noise conditions dur-
ing data acquisition. Thus we can cautiously expect high accuracy once we
integrate it with the gait analysis subsystem.
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Our models can be effectively used for the final stage of the research which
is the passive monitoring of wellness. One of the approaches we are working
on is to compare the current model state with the state which was archived a
fixed time period ago. The model state is defined as a metric in the domain
of parameters of both subsystems.

The preliminary results encourage further research in the multimodal bio-
metric data fusion for recognition and monitoring. Current computational
power at hand allows us to improve existing biometric recognition approaches
by collecting biometric data through alternative channels, as we have done
with audio- and vibration-based gait analysis. Finally, many of the advanced
biometric recognition techniques which are currently used in security and au-
thentication applications can also be used for health monitoring purposes.
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