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Abstract

An interesting machine learning problem is to learn predictive
models that can automatically assign diagnoses or diagnostic
categories to patient cases. However, we often do not have
enough positive samples for many of diagnoses either due to
their rare nature or a limited size of available datasets. This
motivates the use of multi-task learning methods that tend to
improve model performance by imposing model similarities
between related tasks. In this work, we tackle this important
problem by exploring the benefits of existing expert-defined
diagnostic hierarchies. We argue that related tasks (models)
organized in expert-defined hierarchies do not have the same
level of similarity for different classes of samples. We discuss
how task similarities will be different for positive and neg-
ative samples and between parent and child diagnoses. We
propose a new asymmetric version of Hierarchical Adaptive
Multi-task Learning (HA-MTL) method that allows models
to learn separate relatedness coefficient for tasks in the hi-
erarchy based on their class values. Finally, we show that
our model outperforms individually trained SVM models and
symmetric HA-MTL results.

Introduction

Large scale adoption of Electronic Health Records (EHR)
has facilitated many interesting problems such as automatic
classification of patient diagnoses and diagnostic categories.
Automatic classification and assignment of diagnoses at dif-
ferent levels of abstraction during patient’s hospitalization
is extremely useful for concisely summarizing the patient’s
condition. Additionally, it helps one explaining the patient’s
condition, as well as defining a proper context for choosing
future patient management actions, or for supporting predic-
tion and estimation of future outcomes.

However, a problem one often encounters when learn-
ing such classification models from data is that the num-
ber of positive samples available for some of the diagnoses
(diagnostic codes) is very small. This is either due to the
rare nature of the diseases or a limited size of available
datasets. This motivates the use of multi-task learning meth-
ods that can take advantage of available data for similar
diagnostic tasks. This is achieved by imposing similarities
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between behaviour of related models. However, past work
has shown that multi-task learning methods can result in
negative transfer if task similarities are not properly formu-
lated (Rosenstein et al. 2005; Pan and Yang 2010) There-
fore, past research work have proposed methods that model
relationships between tasks by learning tasks relatedness co-
efficients (Ben-David and Schuller 2003; Kang, Grauman,
and Sha 2011), creating task clusters, or by considering hi-
erarchical structure of tasks (Jacob, Vert, and Bach 2009;
Zhou, Chen, and Ye 2011a; Kumar and Daume III 2012).

In this paper we argue that it is important not only to con-
sider which tasks to transfer from but also when to trans-
fer from them as similarity does not imply that models’ be-
haviour will be similarly related for all examples. In hierar-
chical settings such as patient diagnoses classification prob-
lem, parent diagnostic categories include similar groups of
diagnostic codes. Therefore, there will be similarities be-
tween the diagnostic parent’s predictions and its children.
This has motivated methods that allow transfer of model pa-
rameters in a top-down fashion (Dumais and Chen 2000;
Wu, Zhang, and Honavar 2005). However, one can argue that
this adaptation may not be symmetric for positive and neg-
ative classes (in binary classification tasks). In other words,
it is intuitive to think that negative class label of the parent
diagnostic task is more likely to translate to a negative class
label of its particular children, however, it is not possible to
make the same claim for positive instances. In fact we of-
ten expect positive class label of the parent to imply that at
least one but not all child tasks to have positive class as well.
Therefore, imposing same weight for the parent diagnostic
model for both classes during a top-down learning mecha-
nism seems counter intuitive. One would expect that the re-
latedness of parent and child tasks to be asymmetric instead,
but to the extent of our knowledge none of the existing work
have studied this in hierarchical multi-task learning settings.

In the rest of this paper, we first provide introductory
information on Hierarchical Adaptive Multi-task Learn-
ing (HA-MTL) method (Malakouti and Hauskrecht 2019b).
Next we study how HA-MTL is imposing similarities among
the tasks in top-down and bottom-up transfer of model pa-
rameters. Next, we propose a new hierarchical version of
HA-MTL method that allows asymmetric class dependent
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adaptation of model behaviours by learning class specific
relatedness coefficients. Finally, we show our method can
learn models with improved classification performance and
analyze the difference between model adaptation from par-
ent diagnostic categories for positive and negative classes.

Related Work
The problem of modelling patient wide range of diagnoses
has recently become a focus of machine learning research.
Some of existing work tackle the problem of predicting
future admission diagnoses using past history of patients
(Lipton et al. 2015; Choi et al. 2017) while others have
taken on the challenge of assigning diagnostic codes to cur-
rent patient’s visit (Pakhomov, Buntrock, and Chute 2006;
Miotto et al. 2016). Recently new methods have been pro-
posed to take advantage of hierarchical structure of patient
diagnoses to expand the training features (Choi et al. 2017).
Other methods have attempted to leverage task hierarchies
to improve learning of diagnostic models using hierarchical
classification methods (Perotte et al. 2013) and finally new
methods have been proposed to use the hierarchical rela-
tionships of diagnostic codes in multi-task learning settings
(Malakouti and Hauskrecht 2019a).

Hierarchical Multi-task learning for large number of tasks
is closely related to the two types of machine learning meth-
ods: Hierarchical Learning and Multi-task Learning itself.
In the hierarchical learning community top-down learning
of machine learning models have been commonly stud-
ied before (Koller and Sahami 1997). In the top-down ap-
proach a classifier on a low-level of the hierarchy is de-
fined using a decision or a signal generated by its parent
classifiers. There are different versions of the top-down ap-
proach that place various consistency constraints on pre-
dictions of the parent and child tasks and their classifier
outputs, most frequently assuring the probability of a par-
ent (diagnostic category) is higher than the probability of a
low-level class or class category (Dumais and Chen 2000;
Wu, Zhang, and Honavar 2005). The main problem with
the top-down approach is that learning of higher level class
models from data may omit details that the low-level class
models could capture. For example, some of the findings for
a patient may point specifically and with a high accuracy
to a low-level diagnosis while the higher level class model
marginalizes it out during the learning and as a result does
not include it in the model. In such a case the probability
of a lower-level class may be higher than the probability of
a higher level class category violating the constraint consis-
tency. One way to correct for child-to-parent effects is to de-
fine and add a bottom-up process that assures positive lower-
level class predictions aggregate properly in the parent tasks
(Valentini 2011). However, pure bottom-up approach would
require the presence of accurate classifier models on the leaf
classification layer, which is hard to achieve in practice when
datasets of a limited size are used to train such models and
the count of positive instances for such classes are very low.
There exists a variety of hierarchical classification meth-
ods that try to account for both the top-down and bottom-
up classification processes. One example is a Bayesian ag-
gregation method by (DeCoro and Barutcuoglu 2006) that

compiles the hierarchy into the Bayesian belief network and
uses inferences to support the classification on a different
level of hierarchy. Other methods that account for both top-
down (negative) and bottom-up (positive) effects are based
on structured margin classifiers (Dekel, Keshet, and Singer
2004).

Multi-task learning methods tackle this problem by devis-
ing machine learning algorithms that tend to improve indi-
vidual task performance by simultaneously learning of all
tasks (Zhang and Yang 2017). These methods tend to pro-
mote sharing of information between related tasks by im-
posing similarities between them. Evgeniou and Pontil pro-
posed a multi-task learning method based on SVM algo-
rithm that learns all tasks simultaneously by regularizing
their differences from their average (Evgeniou and Pontil
2004). Other methods have been proposed to tackle this
problem by performing shared feature learning (Argyriou,
Evgeniou, and Pontil 2007; 2008).

It has been shown that multi-task learning methods are
highly sensitive to relatedness of tasks, and if not modeled
properly, they can result in negative transfer (Rosenstein et
al. 2005; Pan and Yang 2010). One approach to solve this
problem is to explicitly model and learn task relationships
(Ben-David and Schuller 2003; Kang, Grauman, and Sha
2011; Zhang and Yeung 2012; Zhou, Chen, and Ye 2011b).
The second group of methods attempted to learn task groups
or clusters to prevent negative transfer from unrelated tasks
(Jacob, Vert, and Bach 2009; Zhou, Chen, and Ye 2011a;
Kumar and Daume III 2012). However, none of these meth-
ods take advantage of the complex hierarchical relation-
ships between tasks when they are organized in hierar-
chies. Some earlier work have studied and proposed hi-
erarchical multi-task learning problem in which task rela-
tionships cannot simply be modeled using flat task clus-
ters (Liu et al. 2017; Kim and Xing 2010; Xue et al. 2007;
Malakouti and Hauskrecht 2019a). However, there are yet
many open questions to be answered. One interesting ques-
tion is to investigate whether positive transfer of model
parameters between tasks happen equally across different
classes. In other words, are the negative samples and positive
samples equally important in imposing similarities between
related tasks.

In the rest of this section we first review HA-MTL method
and propose an asymmetric class dependent extension for it
called asymmetric HA-ML. Next we evaluate our method’s
performance on the patient diagnosis classification task and
study class-dependent transfer weights.

Methodology
Assume we have T diagnoses and diagnostic categories,
each covered by a separate binary classification task. The
tasks are organized in a hierarchical structure H . Addition-
ally, we assume each patient’s X ∈ RD consists a D di-
mensional dense representation of patient’s EHR data. Our
objective is to learn T discriminant functions f1, f2, ..., fT
in which ft : RD → R. Hence, the predicted score of the
discriminant function ft can be mapped to one of the binary
labels 0, 1 using a task specific threshold γt. Finally, we in-
troduce a φt,H as the parent of tasks t in the hierarchy H .

324



The conventional method is to learn the T discriminant
functions independently. However, recent work has shown
that by adapting model parameters in a top-down fashion
one can improve lower level diagnostic models by taking ad-
vantage of more general diagnostic models trained for their
parent diagnostic categories. In this section, we first for-
malize Hierarchical Adaptive Multi-task Learning method
(Malakouti and Hauskrecht 2019a). Next, we show that the
transfer of model parameters is achieved by minimizing the
difference between the target task parameters and a weighted
sum of auxiliary tasks. Finally, we propose a new class de-
pendent extension of HA-MTL that allows class dependent
asymmetric adaptation from parent diagnostic models.

HA-MTL: Hierarchical Adaptive Multi-task
Learning

HA-MTL’s goal is to adapt model parameters from parent
and child diagnostic tasks while simultaneously learning the
importance of the set of auxiliary models. They define the
set of auxiliary tasks for the target task t as the set of its
parent and child diagnostic tasks. HA-MTL improves each
diagnostic task in an iterative fashion by proposing a two
phase (top-down and bottom-up) adaptation algorithm that
transfers model parameters from either their parent or child
diagnostic models. In order to perform the model parameter
adaptation and simultaneously learn the importance of aux-
iliary task they propose Regularized Adaptive SVM (RA-
SVM) as show in equation 1.

min
vt,ε,τ

Nt∑

i

εi + C1||vt||2 + C2||τ ||2

s.t. yi
∑

a∈axu(t)

τafa(xi) + yiv
T
t xi ≥ 1− εi

i = 1, ..., Nt, εi ≥ 0

(1)

Where vt corresponds to the model parameters for Δft =

ft −
∑aux(t)

a τafa and τa refers to the relatedness or use-
fulness coefficient of auxiliary task a for target task t. The
function aux(t) provides the set of auxiliary tasks of t in
the corresponding top-down or bottom-up step. Finally, val-
ues of C1 and C2 determine the trade-off between regulariz-
ing model parameters and auxiliary task weights. The opti-
mization problem in Equation 1 is minimizing the hinge loss
while also regularizing both the auxiliary task weights and
model parameters of Δft.

RA-SVM improves upon Adaptive SVM algorithm first
proposed by Yang et al.(Yang, Yan, and Hauptmann 2007).
The advantage of RA-SVM is two fold. First, it attempts to
simultaneously learn the importance of each auxiliary task,
while, the original A-SVM method relied on input to pro-
vide this information. Second, RA-SVM can be optimized
using any standard SVM library by relaxing the assumption
that

∑
a∈aux(t) τa = 1 in which τa is the influence of auxil-

iary task a. This is done be defining a feature map over the
original features and prediction scores of auxiliary tasks.
Lemma 1. RA-SVM finds a trade off between imposing sim-
ilarities between the predictions of the target task and the

weighted average predictions of the auxiliary task models
while regularizing auxiliary task weights or in other words
learning the target task independently.

This can be shown by re-writing the optimization problem
in Equation 1 and by replacing fa(xi) with wa

Txi assuming
all auxiliary tasks are trained using linear models. Addition-
ally, the final models parameters for task t can be written
as wt =

∑
a τawa

Txi + vt. Therefore, Equation 1 can be
re-written as:

min
vt,ε,τ

Nt∑

i

εi + C1||wt −
∑

a∈axu(t)

τawa
T ||2

+ C2||τ ||2
s.t. yiw

T
t xi ≥ 1− εi
i = 1, ..., Nt, εi ≥ 0

(2)

The term ||wt −
∑

a τawa
T || in Equation 2 attempts to

regularize the difference between target task model out-
comes from the weighted average of the auxiliary tasks. This
is while ||τ ||2 promotes smaller influence of auxiliary tasks.
This creates a trade-off between masking the impact of un-
necessary auxiliary tasksand imposing similarities between
the target task and chosen auxiliary tasks. In fact high values
of C1

C2 promotes further regularization of ||wt−
∑

a τawa
T ||

and therefore promotes higher impact of auxiliary weights.
On the other hand lower ratios of C1 and C2 promote inde-
pendent learning of target task.

Not All Samples are Equal

RA-SVM method assumes the signal from auxiliary tasks
are equally useful in improving target task model’s perfor-
mance. However, intuitively one can imagine that auxiliary
model scores in a hierarchical structure can have different
meaning or impact based on the type of the dependency be-
tween related tasks. For instance, in the top-down adapta-
tion phase a negative score of parent model (assuming parent
model has a higher performance) is more likely to translate
to a negative label for the child task. In contrast, a positive
class prediction of the parent may not necessarily mean that
the child task will also be positive. As previously discussed
in the hierarchical classification literature (Silla and Freitas
2011) negative samples in a hierarchy are passed top-down
while positive class samples are promoted in a bottom-up
fashion. Therefore, in this work, we propose an asymmetric
adaptation mechanism based on ReLU operation to break
down the scores of RASVM models to a pair of class depen-
dent signals fp

a = max(0, fa) and fp
a = min(0, fa).

The signals fp
a ∈ [0 ∞] and fn

a ∈ [−∞ 0] allow target
task models to learn two different relatedness coefficients
τpa and τna for positive and negative signals from auxiliary
tasks. RA-SVM optimization problem in Equation 1 can be
written for AsymRA-SVM as shown in equation below:
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min
vt,ε,τ

Nt∑

i

εi + C1||vt||2 + C2||τ ||2

s.t. yi
∑

a∈axu(t)

τpaf
p
a (xi) + τna f

n
a (xi)

+ yiv
T
t xi ≥ 1−
εii = 1, ..., Nt, εi ≥ 0

(3)

AsymRA-SVM enables the target task model to learn how
important each signal from auxiliary tasks is by minimizing
||wt−

∑
a τ

p
af

p
a − τna f

n
a || and learning two separate weights

for each auxiliary task.

Optimizing Prediction Thresholds

AsymRA-SVM splits the auxiliary task signals to a posi-
tive and negative signal. However, this can often be an issue
since the optimum decision threshold γt may not always be
zero. In order to address this problem we attempt to optimize
the decision threshold γt by maximizing the F1 score. Since
F1 is neither differential nor a convex function (Busa-Fekete
et al. 2015) we used Particle Swarm Optimization method
which has been shown to be suitable for ill-formatted, non-
differentiable and non-convex optimization problems (Shi
and Eberhart 1999; Park et al. 2009). To allow fp

a and fn
a

to remain in [0 ∞] and [−∞ 0] ranges we redefined ft as
ft = wt + bt + γt.

Experiments

We conducted our experiments on 22046 ICU patient admis-
sions from MetaVision subset of MIMIC-III dataset (John-
son et al. 2016). MIMIC III provides patient diagnosis using
International Classification of Diseases (ICD-9)(Slee 1978)
codes. Therefore, we rely on ICD-9 hierarchy to obtain di-
agnostic tasks and their hierarchical structure. We obtained
categorical ground truth labels by applying a logical OR op-
eration between all its children. Finally, we omitted any di-
agnostic code with less than 30 positive samples (imbalance
ratio of 0.001) while keeping 2019 diagnostic codes as learn-
ing tasks.

The problem of learning a dense representation of patient
EHR data as X ∈ RD has been studied in past (Miotto
et al. 2016; Hauskrecht et al. 2016). In this paper we fol-
lowed the method proposed in the original HA-MTL paper
(Malakouti and Hauskrecht 2019a). We used Latent Seman-
tic Indexing(LSI) method which uses singular value decom-
position(SVD) to learn a lower dimensional representation
of the admission-event matrix. In order to create admission-
event matrix to be used by SVD, we converted patient’s EHR
data to a set of meaningful binary events by converting med-
ication and procedure orders to indicators events. Labora-
tory results and physiological measurements with numeri-
cal values were converted to Normal and Abnormal Low or
High events based on their standard normal ranges. Finally,
Discrete valued measurements and pain level assessments
were also converted to specific events matching each unique

Table 1: Average performance for all diagnostic tasks
Method Name AUROC F1

Random 0.5 0.0247
SVM 0.764 0.0755
HA-MTLtd 0.770 0.110
AsymHA-MTLtd 0.778 0.135

value. After the conversion, our new EHR events data con-
sisted of 4826 clinical events. This includes 2420 for medi-
cation orders, 116 for procedure orders, 2012 for laboratory
results and 278 for physiological and pain assessment mea-
surements. Finally, we created admission-event matrix by
obtaining a BoW representation of patient events data with
normalized frequencies.

We evaluate our method by comparing the performance
of AsymmHA-MTL to three baselines including random
guessing model, individually trained SVM models and the
original HA-MTL algorithm. We use used Area Under Re-
ceiver Operating Curve (AUROC) and F1 score to pro-
vide quantitative comparison of the methods over a random
stratified (70%-30%) split of data to train and test set. Fi-
nally, we used random sub-sampling to generate 10 different
75%/25% train/validation splits from the train set for hyper
parameters optimization.

Table 1 shows the average AUROC and F1 for all 2019
diagnostic tasks. AsymmHA-MTL method is outperform-
ing the baselines and symmetric HA-MTL method. How-
ever as discussed in (Malakouti and Hauskrecht 2019a) we
expect the majority of improvements to happen on lower
level child diagnosis. Therefore, in Table 2 we have pro-
vided results for parts of two sub branches of ICD-9 heirar-
chy for Fracture of ribs and Diabetes. Our results show that
considerable improvements has been gained by both HA-
MTL and AsymmHA-MTL while AsymmHA-MTL is out-
performing others. Similar trends are visible across different
sub branches of the hierarchy.

Table 3 shows the improvements (AUROC) of mod-
els across different ranges of task priors or P (yi = 1).
AsymmHA-MTL is outperforming HA-MTL across differ-
ent ranges of tasks priors while both methods have higher
gains in tasks with fewer number of positive samples.

Despite the improvements of HA-MTL and AsymmHA-
MTL, one negative observation is that both HA-MTL and
AsymmHA-MTL is that in many case RASVM methods fail
to prevent negative transfer from auxiliary tasks. This is mor
common in tasks with very high imbalance ratio (near 0.001)
and small number of positive samples. Analysis of tasks re-
sults suggests that this is because RA-SM sometimes fails to
prevent negative transfer by failing to choose right values of
C1 and C2 hyperparamters using internal cross-validation.
This can be explained by the significantly small number of
positive samples in validation and test set.

Figure 1 depicts the distribution of taup (impact of posi-
tive signals) and taun (impact of negative signals) in a top-
down transfer of model parameters. The contrast between
the distribution of positive and negative signals show that
models are more likely to learn a higher impact for fn

a when

326



Table 2: Comparison of methods for example branches of ICD9

Diagnostic Task Name
SVM
AUROC

HA-MTL
AUROC

AsymmHA-MTL
AUROC

Diabetes mellitus 0.866 0.863 0.864
Diabetes mellitus without mention of complication 0.714 0.718 0.773

Diabetes mellitus without mention of complication, type II 0.689 0.68 0.757
Diabetes with hyperosmolarity 0.774 0.863 0.858

Diabetes with renal manifestations, type II 0.805 0.823 0.852

Fracture of rib(s) sternum larynx and trachea 0.914 0.912 0.919
Closed fracture of rib(s) 0.90 0.911 0.915

Closed fracture of multiple ribs, unspecified 0.690 0.764 0.833

Table 3: Average model improvements (AUROC) for diagnostic tasks within different ranges of prior for positive class
Average model improvements 0 - 0.0016 0.0016 - 0.003 0.003 - 0.01 0.01 - 0.05 0.05 - 0.1 0.1 - 0.5 0.5 - 1

Number of tasks 91 467 763 495 95 100 8
AsymmHA-MTL 0.0252 0.0158 0.0092 0.0051 0.0001 -0.0003 0.0002
HA-MTL 0.0180 0.0095 0.0055 0.0030 -0.0011 -0.0018 0.0001

a is a parent of target task. This agrees with our hypothesis
discussed in section that negative signals from parent diag-
nostic tasks are more likely to translate to a negative score
in the child diagnostic model.

Figure 1: Distribution of τp and τa values in the top-down
transfer of model parameters

Conclusion

In this paper we argued that usefulness and impact of related
tasks in hierarchical multi-task learning problems can de-
pend not only to the tasks but also on the classes of samples.
For example in the top-down transfer of parameters high
negative scores of parent models is more likely to translate to
negative scores of lower child models as negative labels are
passed from a parent to child while this is not necessary true
for positive labels. Therefore, we proposed an asymmetric
hierarchical adaptive multi-task learning method that allows
models to simultaneously learn model parameters and im-
portance of positive and negative scores of auxiliary tasks in-

dependently. Our results show that during a top-down model
adaptation phase our model is able to improve model perfor-
mances compared to symmetric version of the algorithm and
baseline SVM models.
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