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Abstract

The focus of this work is on developing models that can ac-
curately predict events in complex multivariate event-time se-
ries derived from electronic health records (EHRs). One com-
mon characteristic of many EHR-based event time series is
that they are periodic and events are repeated at regular time
intervals. Hence in order to define a high accuracy event pre-
diction process, the periodicity of the event occurrence needs
to be properly modeled. In this work, instead of trying to com-
bine and model periodic patterns for many event time series in
a common hidden space we propose multiple simple periodic
mechanisms that help us to drive the expression of individual
events in time. We show that these simple periodic mecha-
nisms can be effectively combined with more complex neural
architectures capable of modeling the dependencies among
different types of events. We test our new model on the clini-
cal event prediction problem that consists of hundreds of lab
test events in EHRs derived from MIMIC-III database. We
show that our model that relies on simple periodic mecha-
nisms is able to outperform competing baseline models in the
multivariate event prediction task.

The objective of this work is to build accurate multivari-
ate event time-series models from Electronic Health Records
(EHRs) of past patients that are capable of prospectively pre-
dicting future clinical events for a new patient. Our ability to
accurately predict such events for a new patient holds a great
promise for enhancing patient care and patient management.
First, when events are related to the actions of clinicians, the
successful prediction of the event can help in assisting clin-
icians in automatic ordering or reminders of these actions
(Hauskrecht et al. 2013). Examples of the actions are orders
of medications or lab tests. Second, if events we predict are
related to some adverse events, their predictions can prompt
the clinician to re-evaluate the patient case and take actions
to mitigate the occurrence of such events. Finally, the ac-
curate prediction of events can help us to anticipate the de-
mands for resources that in turn may help through careful
optimization plan ahead of time and alleviate resource bot-
tlenecks.

In order to build multivariate event time series models,
in this work we explore a variety of architectures for sum-
marizing the history of patient data while at the same time
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Figure 1: Histogram of time differences for two consecutive
events of the cyclosporin lab test event time-series. It illus-
trates how events in EHRs occur with periodicity.

preserving the information needed to accurately predict in-
dividual events. One important characteristic of EHR-based
event time series is that they are often periodic and events are
repeated regularly in time. Examples of such events are the
administrations of various medications or regular ordering
of laboratory tests. Figure 1 shows the distribution of time
gaps between two consecutive clinical events for one of the
lab tests with a typical time period of 24 hours. Since peri-
odic or quasi-periodic events are quite frequent in EHRs, in
order to define highly accurate event prediction model the
periodicity of the events and their occurrences need to be
adequately modeled. One approach to incorporate the peri-
odic signals into the event time series models is to use gen-
eral hidden state space frameworks (like the ones defined by
RNNs) and let it figure out (learn) the sufficient statistics
driving individual periodic signals from data. However, this
approach is not feasible when the number of periodic events
we want to model is large, since the hidden state space may
get overloaded with the different periodic patterns and their
combinations. In this work we take a different approach:
we define a simple module for defining periodic events and
apply it to enhance the event prediction models. The main
advantage of the approach is that it is modular and can be
used in combination with other patient history summariza-
tion mechanisms.

We experiment with our periodicity-aware module by
combining it with the different patient-state summarization



architectures. Briefly, recent advances in the temporal neural
architectures such as recurrent neural networks (RNN) (El-
man 1990) and long short-term memory (LSTM) (Hochre-
iter and Schmidhuber 1997) led to the emergence of new
mechanisms for summarizing the past information and de-
pendencies in complex time-series data. These mechanisms
were successfully adopted to model sequence and time-
series data in many areas. The large adoption, in part, due
to its competitive flexibility and performance over tradi-
tional approaches which typically require sophisticated fea-
ture processing. With large amounts of data, the neural archi-
tecture learns to represent the internal representation of input
as well as the way to derive the desired output. Its ability to
abstract necessary information plays a key role in modeling
dependencies between input and output and generating de-
sired output from the input.

We develop a new event time-series framework that com-
bines neural architectures for patient state summarization
in event time series with a new simple periodicity-aware
mechanism to predict periodic events. Especially, the peri-
odic event modeling mechanism can adaptively utilize event
interval statistics computed a priori on the train set with
ones from current time-series towards predicting the next
event occurrence. We apply our model to the task of predict-
ing hundreds of clinical events on multivariate clinical event
time-series data derived from MIMIC-III dataset (Johnson et
al. 2016). We show that combined information in our method
leads to improved prediction performance compared to neu-
ral models singly depend on abstracted information.

Related Work
In this section, we first briefly review the existing ap-
proaches to the modeling of periodicity and then we review
approaches to general and clinical event time-series data.

Modeling Periodicity
To model periodicity from discrete event time-series, various
approaches have been studied. In pattern mining area, many
works focus on discovering periodic patterns using various
methods such as autocorrelation function (ACF) with Fast
Fourier Transformation (FFT) (Berberidis et al. 2002) and
chi-squared test (Ma and Hellerstein 2001). However, these
methods require sequential data with relatively high sam-
pling rates (Yuan et al. 2017) and as a result, it may not rep-
resent well EHR-derived event time-series data where most
events are very sparsely occurring.

To model sparsely occurring periodic events, statistical
parametric models have been developed, such as hidden
semi-Markov model (Kapoor et al. 2015), Poisson mix-
ture model with latent factors (Trouleau et al. 2016), mul-
tivariate temporal point processes with Weibull distributions
(Kurashima, Althoff, and Leskovec 2018), etc.

Modeling Discrete Event-time Series
The majority of discrete event time-series models are based
on Markov processes (McKenzie 2003) and Markov prop-
erty which assumes that the next state depends only on the

most recent state, and is independent of the past states. Stan-
dard Markov processes models assume all states of the time
series are directly observed. However, the states of many
real-world processes are not directly observable and Hidden
Markov models (HMM) solve the problem by introducing
hidden states.

HMM has been shown to reach good performance in var-
ious areas such as stock market prediction (Hassan and Nath
2005) and DNA sequence modeling (Hughey and Krogh
1996). However, the classic HMM model has drawbacks
that the discrete hidden state space can restrict the tran-
sition of the model when applied to complex real-world
time series. Moreover, the dimensionality of the hidden
space is not known a priori, which needs to model the long
term dependencies and prevent overfitting. By defining real-
valued hidden state-space, Linear Dynamical systems (LDS)
(Kalman 1963) and time-series models based on it (Liu and
Hauskrecht 2016) resolve some of these limitations.

With end-to-end learning framework, neural temporal
architectures (Elman 1990; Hochreiter and Schmidhuber
1997; Sutskever, Vinyals, and Le 2014) enable more flexi-
ble time-series modeling. Especially LSTM allows model-
ing long term dependencies in event time-series and they
have been successfully applied to many areas such as vision
(Gregor et al. 2015), speech (Graves and Jaitly 2014), and
language (Sutskever, Vinyals, and Le 2014).

In clinical domain, early works focused on representing
patient state based on predefined temporal templates (fea-
turization) and used classifiers (e.g., SVM) to conduct sub-
sequent tasks such as predicting the next events (Valko and
Hauskrecht 2010) or outlier detection (Hauskrecht et al.
2016). More recent works focused on combining learning of
patient state representation and prediction future state with
probabilistic state-space models such as LDS and Gaussian
Processes (Liu and Hauskrecht 2016; 2015). Latent state-
space allows more flexible and expressive modeling of pa-
tient states. In most recent years, RNN, LSTM, and low-
dimensional embedding methods (Word2Vec) are actively
used to various clinical tasks such as prediction of diagnosis
(Malakouti and Hauskrecht 2019a; 2019b) and future clini-
cal events (Choi et al. 2016; Lee and Hauskrecht 2019).

Methodology
In this work, we develop a multivariate discrete event time-
series prediction framework that models periodicity of mul-
tivariate event streams and utilizes it towards the prediction
task. Our framework processes multivariate event streams
with two channels that model different aspect of clinical
event time-series: one channel is periodicity prediction mod-
ule that learns a periodicity of each event from event se-
quence of current individual patient’s sequence and another
channel is LSTM-based neural prediction module that learns
to model longer-term dependencies of events. To compen-
sate cold-start problem on gathering periodic statistics from
newly observed patient data, we compile prior probabil-
ity distribution of event time-gaps from train set. The prior
time-gap statistics are then combined with patient-specific
event stream periodicity statistics towards predicting the
next event occurrence. In the following, we first formalize



the prediction problem and then we introduce the periodic-
ity prediction module and neural event prediction module.
Finally, we describe the final prediction generation by com-
bining the output of the two modules.

The Prediction Problem
The focus on this work is to predict the next occurrences of
multivariate clinical time-series for a patient given his/her
clinical event history during hospitalization. Particularly, we
focus on predicting the occurrence of lab test events in the
next time-window given the history of the events types of
medication administration, lab test, procedure, and physio-
logical signals. For the timings of events, we use discrete-
time representation. That is, clinical event occurrences of a
patient are discretized into a fixed-sized time-window (e.g.,
12 hours) and all events occurred during each time-window
are represented as a multi-hot vector size of the cardinal-
ity of all event types |E|. Hence, all clinical events of a pa-
tient during hospitalization are represented as a sequence of
multi-hot vectors.

Let a binary vector xt ∈ {0, 1}|E| represents occur-
rences of events of a patient at t-th time window. For the
multivariate target events, we have another binary vector
yt ∈ {0, 1}|E

′| where |E′| is the number of lab test events.
Given past T input vector sequences (x1, . . . , xt), our ob-
jective is to accurately predict next target vector yt+1 that
represents clinical events of lab tests that will occur to the
patient within the next time window.

Periodicity-based Event Time-Series Prediction
Our framework models periodicity of individual event
stream and utilizes it for predicting the next occurrence of
each event in the sequence. In order to extract periodic sig-
nals from a sequence of events of type e, we define two
statistics and update them each time we observe a new event:
Latest Time Gap (θ) is a time gap between two recent occur-
rences of a sequence for event e: θet = χet − χet−1 where χet
and χet−1 are timings of the two most adjacent occurrences
closest from the current time t. Elapsed Time (%) amounts
the time elapsed from the latest occurrence χet of the event:
%et = t − χet . Based on θet and %et , we create a periodicity-
based predictive signal αet that indicates whether the next
event will occur during prediction time window (size: W )
defied by %et :

αet+1 =

{
1 if %et < θet < %et +W

0 otherwise
(1)

Prior Gap Distribution One issue with the aforemen-
tioned approach is that it cannot make a prediction until it
observes the first two occurrences (χ1 and χ2). Another is
that when the recent time gap statistic on the current patient
event sequence differs from the typical gap (e.g., due to ran-
domness in data collection), the model can output an incor-
rect α signal. To compensate for these issues, we propose
to compile and use the time gap statistic from the complete
train set.

Specifically, we define the prior probability distribution
(Ψe) of time gaps for event type e as follows: we first create
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Figure 2: The inter-event gap histogram in Figure 1 is placed
on the time axis for prediction. Left edge of the histogram
is fitted at the timing of the recent event occurrence. The
prior time-gap-based prediction signal β is computed as a
probability mass ψwindow

e in prediction window (red square)
over a probability mass ψonward

e from current time to onward
future (blue dotted square).

a histogram of time gaps by counting the number of occur-
rences (Y-axis) according to each time-gap (X-axis) from
event streams of e across all patients in the train set, as
shown in Figure 1. Then, we normalize each count in the
histogram to turn the histogram into a probability distribu-
tion. Given a specific time-gap τ , Ψe can be considered as a
function that outputs a probability of observing an event at
next time gap τ by returning a value at a bin corresponding
to τ in the normalized histogram: Pr(τ) = Ψe(τ).

Using compiled prior probabilities in Ψe, the prior-based
predictive signal βet+1 is computed as a ratio of two proba-
bility masses:

βet+1 = ψwindow
e /ψonward

e (2)

where the probability masses are computed as a sum of prob-
abilities in an area defined by specific time ranges shown in
Figure 2:

ψwindow
e =

t+W∑
τ=t

Ψe(τ) ψonward
e =

t+∞∑
τ=t

Ψe(τ) (3)

Neural Event Prediction
To capture the predictive signals from past history, we use
LSTM-based neural architectures. In a nutshell, we first
project events observed in a time-window t into a lower-
dimensional embedded space and pool event embeddings
into a single real-valued vector x̃t. Then, we use LSTM to
abstract information on the time-window into hidden state
spaces ht with encoded information from previous steps in
ht−1. In the following, we describe the details of our ap-
proach.

Event Embedding and Pooling. To generate LSTM in-
puts we rely on the embedding matrix Wemb ∈ Rde×|E|.
Briefly, we first represent all input events that occur in a
time-window t to a multi-hot vector xt and then project this
vector into a lower dimensional representation x̃t:

x̃t = Wemb · xt (4)



where de is the dimension of the embedding. This process
amounts to aggregate individual event embeddings in a time-
window into a single vector using sum pooling.

LSTM-based Sequence Process. With the help of gat-
ing mechanisms and hidden states, LSTM models have been
successfully used to model time series with various depen-
dencies including those with longer horizons. At a glance,
at each time step t, given input x̃t and the previous hidden
state ht−1, LSTM updates the hidden state ht and cell states
Ct:

ht, Ct = LSTM(x̃t, ht−1, Ct−1) (5)

For details of the LSTM parameterization, please refer to
(Hochreiter and Schmidhuber 1997).

Predicting Next Events
The prediction of events in the next window (ŷt+1) is com-
puted by combining predictive signals αet+1, β

e
t+1 from pe-

riodicity module and ht from LSTM. Specifically, for each
event e, we first combine these signals into a vector γ by
concatenation:

γe = [ht+1;αet+1;βet+1] (6)

Then, γ is projected to a real-valued scalar ze through a lin-
ear transformation with a vector W e ∈ R1×dh+2 and a bias
be ∈ R. We apply the same procedure to all target events
e ∈ E′ and compose a vector z:

ze = W e · γe + be

z = [z1; . . . ; z|E
′|]

(7)

We compute the final prediction with a logistic sigmoid
function σ(x) = 1/(1 + exp(−x)):

ŷt+1 = σ(z + bκ) (8)

where bκ is a recent-bias term (Lee and Hauskrecht 2019)
which brings information about recently occurred events. It
is known that the bias can improve the quality of EHR-based
event sequence prediction. Briefly, bκ is computed as a linear
projection of recently occurred events to a target event space
with a matrix Wr ∈ R|E|×|E′| and a bias term br:

bκ = Wr · xt + br (9)

Parameter Learning
The parameters of the model are learned by stochastic gradi-
ent descent based adaptive optimizer (Adam). For loss func-
tion, we use the binary cross-entropy between true label vec-
tor yt+1 and prediction vector ŷt+1 over all sequences in
train set.

Experiments
In this section, we provide the details experimental evalua-
tion of our new event prediction model and its comparison
to multiple baseline models. We start by describing the data
preprocessing steps.

Data and Preprocessing
Data Source and Cohort Selection. We use MIMIC-III
dataset to evaluate the performances of our model. It is
publicly available and contains real-world EHRs of inten-
sive care unit patients. We extract 5137 patients from the
database with following criteria: (1) adult, whose age be-
tween 19 and 99 (2) length of stay is between 48 and 480
hours (3) whose clinical records are in the Meta Vision, one
of EHR systems that generated patient records for MIMIC-
III dataset. Except for these criteria, we do not filter out any
patient in order to test our model across the general patient
pool regardless of disease, symptoms, or conditions. We ran-
domly split 5137 patients into training and test sets with a
ratio of 8:2.

Feature Preparation. Then we generate multivariate dis-
crete event time-series by segmenting all sequences with
three window sizes (W = 6, 12, 24 hours). At each step of
a window segment, a multi-hot vector input xt ∈ (0, 1)

|E|

is formed by aggregating all types of events occurred in the
window. Similarly, the prediction target yt+1 ∈ (0, 1)

|E′| is
formed as a multi-hot vector of lab test events occurred in
the next window segment. For the category of events in the
input window, we use four clinical event types: medication
administration, lab results, procedure, and physiological re-
sult. For medication, lab, and procedure event categories, we
filter out those events observed in less than 500 different pa-
tients. Further, for each of 10 splits, we filter out those events
that not observed in both train and test sets. As a result, we
obtain 64 medication events, 44 procedure events, 155 lab
test events, and 19 physiological signal events. They corre-
spond to (|E|=) 282 input events xt and (|E′|=) 155 target
events yt for multivariate discrete event prediction task.

Baseline Models
We compare our model with baseline models that can also
predict events in multivariate vector given history sequence:
• State-space Markov Model (Markov) defines next tar-

get event occurrence yt+1 as a Markov transition of cur-
rent event occurrence xt. We parameterize the transition
by a linear transformation with sigmoid output function:
ŷt+1 = σ(Ws · xt + bs),Ws ∈ R|E′|×|E|

• Logistic Regression with Binary Input (LR-BN): As
the Markov model only utilizes the current information,
it cannot make use of information from the past. To solve
the problem, we aggregate all event occurrences in a
history sequence and represent it as an indicator vector.
Then, contents in the vector are projected to the predic-
tion by using the same parameterization of the Markov
model.

• LSTM: We take hidden states ht and project it to event
space to make a prediction: ŷt+1 = σ(Wl ·ht + bl),Wl ∈
Rdh×|E′|. As LSTM processes sequences with hidden
states, it can utilize information from distant past.

• LSTM with Recent Bias (LSTM-RB): As shown in (Lee
and Hauskrecht 2019), when the next event prediction
from LSTM is shifted with recent bias from the projected



Table 1: Overall prediction results (AUPRC) for different
window segmentation settings. The metrics are averaged for
10 different random subsampling splits.

W=6 W=12 W=24

LR-BN 0.1511 0.2194 0.3000
Markov 0.1749 0.2658 0.3324
LSTM 0.2427 0.2797 0.3161
LSTM-RB 0.2512 0.2928 0.3367
Proposed 0.2593 0.2981 0.3378

recent event occurrence xt, the predictability is signifi-
cantly increased. The recent bias vector bκ in Equation
9 is added to hidden states ht of the baseline LSTM:
ŷt+1 = σ(Wl · ht + bl + bκ).

Evaluation Metrics
The area under the precision-recall curve (AUPRC) is used
to evaluate the quality of predictions of the models. Under
a highly imbalanced dataset, AUPRC is known for present-
ing a more accurate profile on measuring performances of
models (Saito and Rehmsmeier 2015). Due to the nature of
EHR-derived time-series data, many events occur sparsely
among all possible time windows. For example, the rate of
occurrence among all possible time window is low such as
5% for medication category, 7% for procedure category, and
12% for lab test category.

In order to conduct the experiments in a robust way, we
obtain 10 different train-test sets from the random shuffling
of patients. The reported AUPRC values (for the different
methods) are averaged over all target events and over test
sets for 10 different train/test splits.

Implementation Details
For the experiments, we use fixed embedding size de = 64,
learning rate = 0.005, and minibatch size = 128. To pre-
vent over-fitting, L2 weight decay regularization is applied
to all models including baselines. Size of hidden state dh =
(64, 128, 256, 512) and the regularization weight are deter-
mined by 5-fold internal cross validation.

Experiment Results
Table 1 summarizes the performance of proposed model and
baseline models for lab test results events prediction (|E′| =
155) on different window segmentation settings. The results
show that our model outperforms all baselines. More specif-
ically, compared to LSTM-RB, the best-performing base-
line model, our model shows 5.4% improvement for 6-hour
window, 3.2% and 1.8% improvements for 6 and 12 hour
windows respectively. Compared to averaged AUPRC of all
baseline models, our model shows 26%, 12%, and 5% im-
provements for 6, 12, and 24 hour windows. The overall per-
formance across all models is higher with a larger window
segmentation setting. This is mainly due to a higher prior for
events for a longer prediction window.

To confirm the benefits of the periodicity signals α, β, we
break down the prediction results based on the number of

previous occurrences. Concretely, for each event type, we
divide all occurrences into three groups: First occur group
includes cases without any previous occurrence (from the
beginning till the first occurrence). Second occur group in-
cludes cases with only one previous occurrence (after the
first occurrence until the second occurrence). Later occur
group includes cases with two and more previous occur-
rences (after the second occurrence till the last occurrence).
AUPRC is first computed separately for each event in each
group and then averaged across events for the report. Since
the periodicity signals cannot be generated before observ-
ing the first occurrence, there should be a minimal perfor-
mance gap between our model and LSTM-RB in the first oc-
cur group. As β is generated after the first occurrence and α
is generated after observing the first two occurrences, we ex-
pect to see some performance gap in the second occur group
and more in the later occur group. As shown in Figure 3, the
results reflect the expectation. For example, in W=6 setting,
our model performs 1.21% better than LSTM-RB in the first
occur group. In the second and later occur groups, the gap is
increased to 3.3% and 3.4% respectively. For W=12 setting,
our model performs 1.4% and 2.2% better than LSTM-RB
in the second and later groups but it performs 1.6% worse in
the first occur group.

Conclusion
We have proposed a novel clinical time-series model that
aims to accurately predict events in complex multivariate
event-time series with periodic event patterns. To do it, we
develop a simple periodic mechanism to drive the expres-
sion of individual events in time. We show that this mech-
anism (when applied to many different events) can be ef-
fectively combined with more complex neural architectures
capable of modeling the dependencies among different types
of events. We test our new model on the clinical event pre-
diction problem that consists of hundreds of lab test events
in EHRs derived from MIMIC-III database. We show that
our model that relies on simple periodic mechanisms is able
to outperform more general state-space frameworks.
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