Nonparametric Regressive Point Processes Based on Conditional Gaussian Processes

Siqi Liu and Milos Hauskrecht

Department of Computer Science, University of Pittsburgh

Introduction

We study point process models for multivariate event sequences

- Data consist of multiple sequences $\mathcal{D} = \{y_c\}_{c=1}^{|\mathcal{D}|}, y_c = \{(t_i, u_i)\}_{i=1}^{|y_c|}$
- $t_i \in \mathbb{R}$ is the time and $u_i \in \{1, \ldots, U\}$ the type of the *i*-th event
- ullet For each type $m{u}$ of events, a conditional intensity function (CIF)

$$\lambda_u(t) = \lim_{dt o 0^+} rac{\mathbb{E}\left[N([t, t+dt)) | \mathcal{H}_t
ight]}{dt}$$

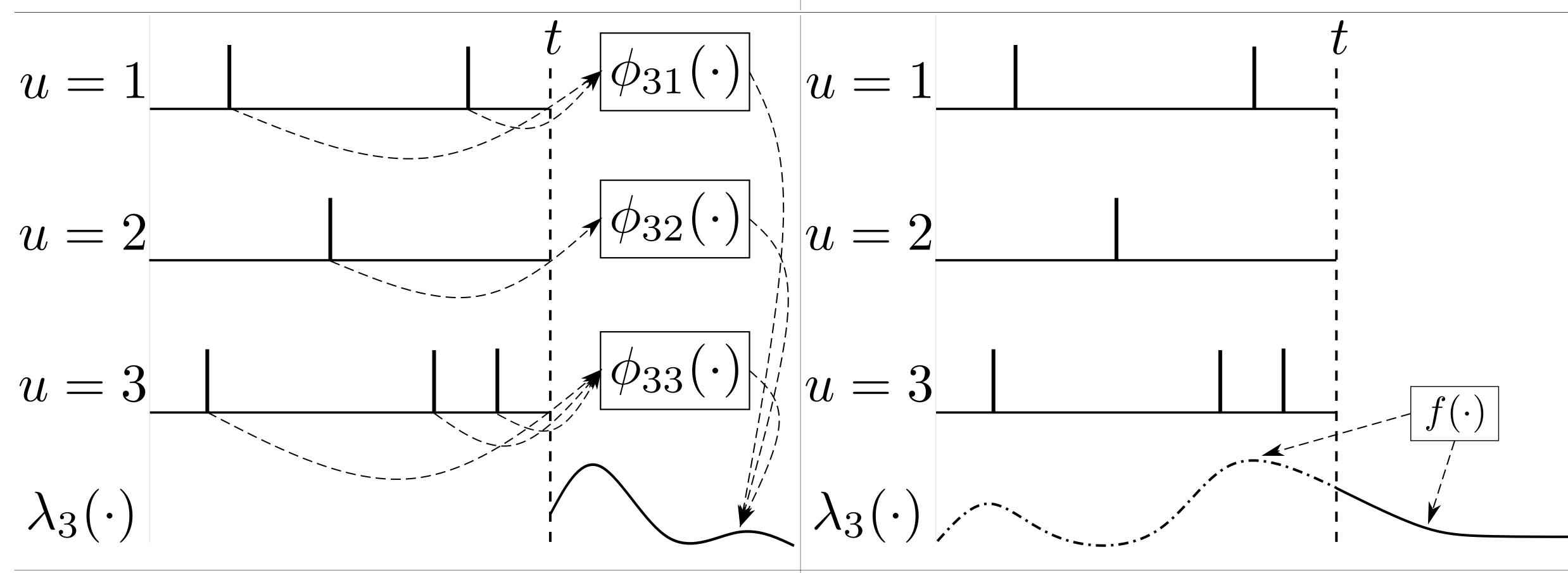
is the instantaneous rate of events at time t given the history \mathcal{H}_t

$$p(y_c) = \prod_{u=1}^U \left[\prod_{i=1}^{|y_c|} \lambda_u(t_i)^{\delta(u_i,u)} \exp\left(-\int_0^{T^c} \lambda_u(t) dt
ight)
ight] riangleq \prod_{u=1}^U p_u(y_c)$$

Two types of models have been developed independently over years

Hawkes Process

GP-Modulated Point Process



$$\lambda_3(t) = \mu_3 + \sum_{t < t} \phi_{3u_j}(t - t_j)$$

$$\lambda_3(t) = g(f(t)), f \sim \mathcal{GP}, g(\cdot) \geq 0$$

Regressive point process
Once learned, applicable to unseen sequences

Limited flexibility

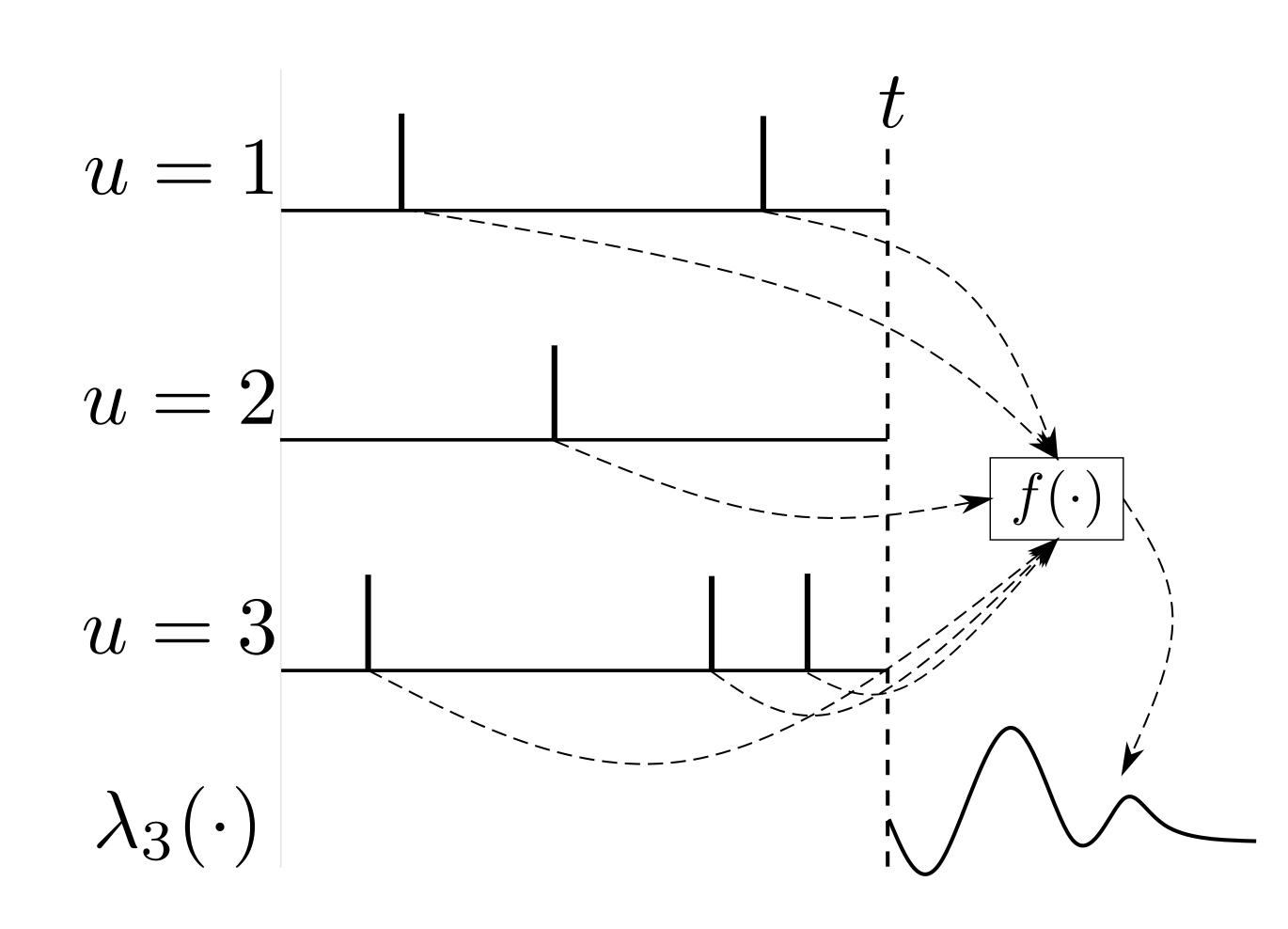
Latent-state point process

Principled way to flexibly model
the intensity functions

Inference on the same sequence

GP Regressive Point Processes

We propose a model combining the advantages of the above two models



$$\lambda_3(t) = f(x(t))^2$$

= $f(t - s_1^1(t), \dots, t - s_U^Q(t))^2$

- $f \sim \mathcal{GP}(\mu, K)$
- $s_u^q(t)$ is the time of the q-th (from last) event of type u before time t
- $x(t) = (t s_u^q(t))_{u=1,q=1}^{U,Q}$ are the times since the last Q events for each type u

$$K(x(t), x'(t')) = \sum_{d=1}^{D} \mathbb{I}\left[x_d(t)\right] \mathbb{I}\left[x_d'(t')\right] \gamma_d \exp\left(-\frac{(x_d(t) - x_d'(t'))^2}{2\alpha_d}\right)$$

$$K(x(t), x'(t')) = \sum_{d=1}^{D} \mathbb{I}\left[x_d(t)\right] \mathbb{I}\left[x_d'(t')\right] \gamma_d \exp\left(-\frac{(x_d(t) - x_d'(t'))^2}{2\alpha_d}\right)$$

• $\mathbb{I}[x_d(t)] = 1$ iff the q-th (from last) event of type u exists

Conditional GPRPP

- Introduce a set of pseudo-input-points Z and their pseudo-observations $f_Z=m_Z+\epsilon_Z$ with noise ϵ_Z
- Marginalize out ϵ_Z and maximize the likelihood conditioned on m_Z

$$\begin{aligned} \ln p_{\tilde{u}}(y|m_Z) &= \ln \iint p_{\tilde{u}}(y|f_x) p(f_x|m_Z, \epsilon_Z) p(\epsilon_Z) df_x d\epsilon_Z \\ &= \ln \int p_{\tilde{u}}(y|f_x) p(f_x|m_Z) df_x \\ &= \ln \mathbb{E} \left[p_{\tilde{u}}(y|f_x) \right] \geq \mathbb{E} \left[\ln p_{\tilde{u}}(y|f_x) \right] \end{aligned}$$

 $p_{\tilde{u}}$ is the density for event type \tilde{u}

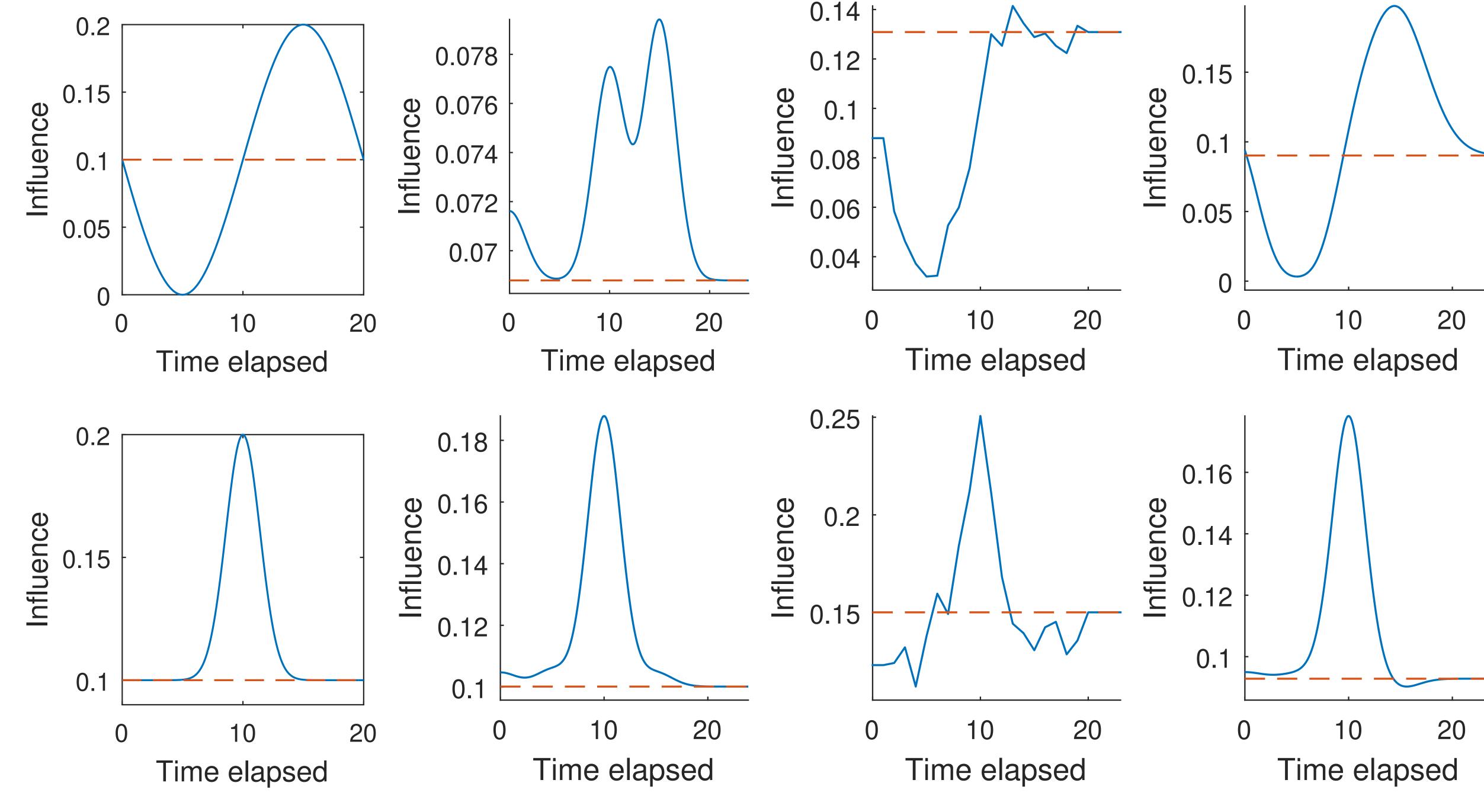
Results

 $\mathbf{HP}\text{-}\mathbf{LS}[2]$

Learning the influence of past events. Solid lines are the CIFs after the occurrence of an event of the same type. Dashed lines are the baseline CIFs.

 $\mathbf{HP}\text{-}\mathbf{GS}[1]$

Ground truth



Test log-likelihood on MIMIC lab orders. Each dataset consists of a different set of multiple types of lab test orders on patients.

- [1] Xu et al. Learning Granger causality for Hawkes processes. In *International Conference on Machine Learning*, 2016.
- [2] Eichler et al. Graphical modeling for multivariate Hawkes processes with nonparametric link functions.

 Journal of Time Series Analysis, 2017.
- [3] Mei et al. The neural Hawkes process: A neurally self-modulating multivariate point process. In Advances in Neural Information Processing Systems, 2017.