# Nonparametric Regressive Point Processes Based on Conditional Gaussian Processes

# Siqi Liu and Milos Hauskrecht

Department of Computer Science, University of Pittsburgh



#### Introduction

We study point process models for multivariate event sequences

- Data consist of multiple sequences  $\mathcal{D} = \{y_c\}_{c=1}^{|\mathcal{D}|}, y_c = \{(t_i, u_i)\}_{i=1}^{|y_c|}$
- $t_i \in \mathbb{R}$  is the time and  $u_i \in \{1, \ldots, U\}$  the type of the *i*-th event
- ullet For each type  $m{u}$  of events, a conditional intensity function (CIF)

$$\lambda_u(t) = \lim_{dt o 0^+} rac{\mathbb{E}\left[N([t, t+dt)) | \mathcal{H}_t
ight]}{dt}$$

is the instantaneous rate of events at time t given the history  $\mathcal{H}_t$ 

$$p(y_c) = \prod_{u=1}^U \left[ \prod_{i=1}^{|y_c|} \lambda_u(t_i)^{\delta(u_i,u)} \exp\left(-\int_0^{T^c} \lambda_u(t) dt
ight) 
ight] riangleq \prod_{u=1}^U p_u(y_c)$$

Two types of models have been developed independently over years

#### Hawkes Process

#### GP-Modulated Point Process



$$\lambda_3(t) = \mu_3 + \sum_{t < t} \phi_{3u_j}(t - t_j)$$

$$\lambda_3(t) = g(f(t)), f \sim \mathcal{GP}, g(\cdot) \geq 0$$

Regressive point process
Once learned, applicable to unseen sequences

Limited flexibility

Latent-state point process

Principled way to flexibly model
the intensity functions

Inference on the same sequence

## GP Regressive Point Processes

We propose a model combining the advantages of the above two models



$$\lambda_3(t) = f(x(t))^2$$
  
=  $f(t - s_1^1(t), \dots, t - s_U^Q(t))^2$ 

- $f \sim \mathcal{GP}(\mu, K)$
- $s_u^q(t)$  is the time of the q-th (from last) event of type u before time t
- $x(t) = (t s_u^q(t))_{u=1,q=1}^{U,Q}$  are the times since the last Q events for each type u

$$K(x(t), x'(t')) = \sum_{d=1}^{D} \mathbb{I}\left[x_d(t)\right] \mathbb{I}\left[x_d'(t')\right] \gamma_d \exp\left(-\frac{(x_d(t) - x_d'(t'))^2}{2\alpha_d}\right)$$

$$K(x(t), x'(t')) = \sum_{d=1}^{D} \mathbb{I}\left[x_d(t)\right] \mathbb{I}\left[x_d'(t')\right] \gamma_d \exp\left(-\frac{(x_d(t) - x_d'(t'))^2}{2\alpha_d}\right)$$

•  $\mathbb{I}[x_d(t)] = 1$  iff the q-th (from last) event of type u exists

### Conditional GPRPP

- Introduce a set of pseudo-input-points Z and their pseudo-observations  $f_Z=m_Z+\epsilon_Z$  with noise  $\epsilon_Z$
- Marginalize out  $\epsilon_Z$  and maximize the likelihood conditioned on  $m_Z$

$$\begin{aligned} \ln p_{\tilde{u}}(y|m_Z) &= \ln \iint p_{\tilde{u}}(y|f_x) p(f_x|m_Z, \epsilon_Z) p(\epsilon_Z) df_x d\epsilon_Z \\ &= \ln \int p_{\tilde{u}}(y|f_x) p(f_x|m_Z) df_x \\ &= \ln \mathbb{E} \left[ p_{\tilde{u}}(y|f_x) \right] \geq \mathbb{E} \left[ \ln p_{\tilde{u}}(y|f_x) \right] \end{aligned}$$

 $p_{\tilde{u}}$  is the density for event type  $\tilde{u}$ 

#### Results

 $\mathbf{HP}\text{-}\mathbf{LS}[2]$ 

Learning the influence of past events. Solid lines are the CIFs after the occurrence of an event of the same type. Dashed lines are the baseline CIFs.

 $\mathbf{HP}\text{-}\mathbf{GS}[1]$ 

Ground truth



Test log-likelihood on MIMIC lab orders. Each dataset consists of a different set of multiple types of lab test orders on patients.

- [1] Xu et al. Learning Granger causality for Hawkes processes. In *International Conference on Machine Learning*, 2016.
- [2] Eichler et al. Graphical modeling for multivariate Hawkes processes with nonparametric link functions.

  \*Journal of Time Series Analysis\*, 2017.
- [3] Mei et al. The neural Hawkes process: A neurally self-modulating multivariate point process. In Advances in Neural Information Processing Systems, 2017.