
Active Learning of Classification Models
with Likert-Scale Feedback

Yanbing Xue Milos Hauskrecht
Department of Computer Science, University of Pittsburgh, Pittsburgh, PA

{yanbing, milos}@cs.pitt.edu

Abstract
Annotation of classification data by humans can be a time-
consuming and tedious process. Finding ways of reducing
the annotation effort is critical for building the classifica-
tion models in practice and for applying them to a variety
of classification tasks. In this paper, we develop a new active
learning framework that combines two strategies to reduce
the annotation effort. First, it relies on label uncertainty in-
formation obtained from the human in terms of the Likert-
scale feedback. Second, it uses active learning to annotate
examples with the greatest expected change. We propose a
Bayesian approach to calculate the expectation and an in-
cremental SVM solver to reduce the time complexity of the
solvers. We show the combination of our active learning s-
trategy and the Likert-scale feedback can learn classification
models more rapidly and with a smaller number of labeled
instances than methods that rely on either Likert-scale labels
or active learning alone.

1 Introduction
Classification problems are part of our everyday life. While
tremendous progress has been made in the development of
methods for building classification models from data, the
problem of data annotation and its costs may still hinder their
construction and consequently prevent their wider deploy-
ment. The objective of this work is to study ways of reducing
the data annotation effort so that high-quality classification
models can be built. Our focus throughout the paper is on
the construction of binary classification models.

In this work, we explore two strategies to alleviate the
annotation effort and their combination. First, we study
solutions for incorporating a more refined feedback on the
class label, and its confidence humans may provide when
making label assessment. Second, we study and develop
an active learning framework that utilizes this information
and selects examples most promising for classification model
refinement.

Traditional classification model learning methods as-
sume the feedback provided by humans is restricted to the
class information. However, in practice, especially when

the data object classification is not straightforward human-
s can differentiate among examples that are clear, weaker or
marginal representatives of a class. It is this type information
we seek to collect and incorporate into the model building
process. In terms of human feedback, this information can be
obtained and expressed in various forms, for example, vari-
ous numerical or probabilistic scores [1, 2, 3]. In this paper,
we assume the feedback expressed in terms of Likert-scale
categories [4]. Briefly, Likert-scale categories define a set
of ordinal categories humans can use to provide information
about the strength of agreement (or belief) in the respective
class labels. For example, when obtaining a feedback from
a physician on whether the patient suffers from a particular
disease or not, the binary true/false feedback can be refined
by obtaining physician’s belief in the presence of the disease
on a 5-point Likert scale by asking if he/she agrees, weak-
ly agrees, is neutral, weakly disagrees, or disagrees with the
disease. We develop methods based on ordinal regression [5]
and ranking [6, 7] to learn the classification model from such
information and demonstrate its benefits over feedback that
is based only on class label information.

Another widely used approach to alleviate the data an-
notation problem is active learning [8, 9, 10] . In active learn-
ing, the learner selects the examples that appear to be most
promising for the refinement of the classification model and
asks the user to provide their label. Many different active
learning strategies have been developed to address the prob-
lem when information about the class label is queried. In
this work, we develop a new active learning strategy that at-
tempts to optimize the example selection by considering the
Likert-scale feedback. Our example-selection strategy seeks
the example with the greatest expected model change and re-
lies on the Bayesian estimates to calculate the expectations.

We test our new framework on multiple classification
problems based on UCI and real-world clinical decision
problem data. We demonstrate the ability of our solutions
to reduce the data labeling cost both individually and in
combination.



2 Related Work
In this section, we briefly review the work related to our
approach. We start by discussing the existing work in which
label uncertainty information is utilized to make the learning
of classification models more sample-effective. After that,
we review related work on active learning.

2.1 Learning with soft-label information The problem
of learning binary classification models from auxiliary soft
label information is relatively new was first explored by
[1, 2, 3]. This line of work assumes the label information
can be supplemented by a probability with which the anno-
tator believed the class label occurs. The human feedback
was provided in terms of the probability estimate. To exploit
the probabilistic feedback the authors first studied and devel-
oped multiple approaches for learning classification models
from probabilistic labels via regression. They showed that
these approaches may not be the best and may not learn a
good model when soft labels are subject to noise, which is
very likely when probabilities are based on human assess-
ments [11, 12, 13]. To deal with this problem, they proposed
a more robust method that ignores numerical differences in
probability estimates and replaces them with the pairwise or-
dering of data points in the training data. The method learns
a parametric discriminative model that maximizes the satis-
faction of all these order constraints. An advantage of the
approach is that it builds a classification model one can eas-
ily apply to classify future data. Its limitation is that the
number of constraints the model tries to satisfy is quadrat-
ic in the number of training data points. In addition to soft-
label learning framework by [1, 2, 3] where soft labels come
from just one annotator, [14] explored a framework where
soft labels are derived from multiple annotators with poten-
tial disagreements. This work, however, comes with multi-
ple limitations. First, it does not or consider any soft label
noise. Second, it does not give a clear approach how the soft
label information should be used to learn a better classifica-
tion model. Finally, it lacks empirical support to demonstrate
the impact on model learning. More recently, [15, 16] pro-
posed a new non-parametric algorithm for learning the clas-
sification model from probabilistic estimates. The approach
works by predicting the probability associated with binary
classes based on the Gaussian process regression. Briefly,
the method defines the mean function of the Gaussian pro-
cess to be 0.5 and the covariance function using the Radial
basis kernel. The model lets one predict the probability pi
for any new point xi by calculating the posterior distribution
of the Gaussian process. The limitations of the approach are
the design of the covariance function (restricted to the radial
basis functions), and a non-parametric nature of the mod-
el when it is applied to prediction tasks. Overall, while all
of the above methodologies showed the benefit of addition-
al probabilistic information in learning classification models

more efficiently, they also dealt with the problem of noise in
the numerical probabilistic estimates based on human feed-
back. While in this work we build upon the existing work, we
are different in that we assume the feedback on label uncer-
tainty information is limited to a relatively small number of
ordinal Likert-scale categories. This type of label uncertain-
ty feedback is more realistic, and it is also less likely to suffer
from the noisy estimates. Indeed the literature on the design
of user studies recommends the number of Likert scale cate-
gories not to exceed nine, with five or seven being a typical
design choice. We propose and develop efficient classifica-
tion algorithms for learning the binary classification models
for the Likert scale class label feedback.

2.2 Active learning Active learning integrates model
learning and data instance annotation processes into one
learning framework. Active learning sequentially labels an
initially unlabeled set of examples and chooses which exam-
ple should be labeled next. By selecting the examples most
informative for building the classification model it can min-
imize the cost of labeling (number of examples that need to
be labeled) necessary for building a good model. Different
strategies to define the “informativeness” of examples have
been proposed in the literature. Uncertainty sampling [8] is
the simplest and most widely used strategy. It queries the ex-
ample that the current model predicts with the lowest class
confidence. Another popular and often very well perform-
ing strategy is query-by-committee strategy [17] that picks
the example to be queried with the help of multiple predic-
tors, by finding the example these predictors disagree on the
most. The construction of the Committee may be done in
many different ways. For example, query-by-bagging [18]
repeatedly samples subsets of labeled instances (using bag-
ging [19]) and trains committee models on them. In terms of
the size of the committee, previous works have shown that
even a small committee (size two or three) could work well
in practice [9, 17, 20]. The expected model change strate-
gy [21, 22] queries examples which cause the largest change
to the current model if we knew their labels. The disadvan-
tage of the strategy is that “informativeness” can be over-
estimated. Other representative strategies are expected error
reduction [10] and variance reduction [23]. The first one
seeks an example that would let it reduce the generalization
error of the model. The second one seeks an example that
would minimize the prediction variance of the current model
the most.

Our goal is to develop an effective active learning ap-
proach that works well with ordinal categories reflecting
Likert-scale. Attempts to integrate active learning strategies
with such information have been very limited so far. More-
over, many of the above query strategies developed for bi-
nary class labels do not work in settings of Likert-scale la-
bels. For example, uncertainty sampling relies on the confi-



dence of the predictions. This strategy works well for labels
without confidence information, say, binary labels. Howev-
er, it does not make much sense if confidence may be con-
firmed by the feedback. In this work, we develop a new in-
stance selection strategy that collaborates with ordinal cat-
egory Likert-scale feedback and picks the instance with the
largest expected impact (change) on the model.

3 Methodology
In this part, we develop an active learning framework that
builds a classification model by actively querying an anno-
tator who provides feedback to the framework for assess-
ing the instances using Likert-scale categories. We start by
first defining and formalizing the problem of learning from
ordinal Likert-scale category labels. After that, we present
an algorithm for learning the classification model from such
feedback. Second, we show how this algorithm can be in-
cluded in the active learning framework that aims to improve
the model by wisely selecting the examples to be assessed
next. The criterion used to choose from among unlabeled
candidate instances is based on the highest expected clas-
sifier prediction change. We also briefly describe solutions
to two partial problems: (1) how to model the distribution
which is used to calculate the expected change, and (2) how
to speed up training via incremental solver when adding one
unlabeled sample.

3.1 Problem settings Our objective is to learn from data
a binary classifier: C : X → Y , where X is a feature
space and Y ∈ {0, 1} is one of the two class labels. At the
very beginning, all the examples in dataset D are unlabeled.
However, we can sequentially query a human annotator to
provide information for individual examples and use this
feedback to build a classification model. We assume that
in addition to traditional binary labels Y = {0, 1}, each
data example is also assessed in terms of ordinal Likert-scale
categories characterizing the degree of agreement of the
annotator in its assignment to one of the classes. Therefore,
a labeled data sample di is a vector consisting of three
parts (xi, yi, ui), that is, a vector of features, a traditional
binary label and a Likert-scale label indicating the level of
agreement that the data example falls into one of the two
classes. Both yi and ui are based on human annotator
feedback. For example, if a human expert is asked to assess
a patient whether he or she suffers from a particular disease,
x represent the labs, symptoms and observations describing
the patient state, y is expert’s disease/no-disease decision,
and u represents the degree of which the expert believes in
(and agree) with the disease diagnosis.

3.2 Learning classifier from Likert-scale labels Let us
focus first on the task of learning a classification model from
the data represented by the triplets (xi, yi, ui), that is, we

assume the data with this information are available and can
be used. One way to learn the classification model would
be to adapt and build upon approach proposed by [1, 2]
for probabilistic soft-label feedback with noise. Briefly,
their approach seeks to find a ranking function f(x) =
wT xi that aims to satisfy all pairwise constraints among
data points ordered according to their ’noisy’ probability
estimate reflecting the confidence of the annotator in the
binary class label. They formulate and solve the problem
using an SVM-like optimization task that seeks to satisfy as
many constraints as possible. The key trick in their approach
is that the same ranking function can also be used to define
a discriminative projection that lets us discriminate between
class 0 and class 1 data instances. We can quickly adapt their
approach and apply it to Likert-scale assessments by creating
pairwise ordering constraints only among data points that
fall into the different Likert-scale categories. Briefly if two
data entries xi and xj in the dataset are assigned ordinal
category labels such that ui > uj , we expect that the same
order will be preserved also by the the ranking function:
f(xi) > f(xj). Similarly to [1, 2], a classifier, and its
discriminative projection can be then defined using the same
ranking function.

Unfortunately, the above solution suffers from a draw-
back: the number of pairwise constraints one wants to sat-
isfy grows quadratically with the number of data instances
which negatively affects the time-complexity and scalability
of the solution. To alleviate the scalability problem, we try
to abridge the number of constraints imposed on the ordinal
Likert-scale labels. In this paper, we propose an improve-
ment based on ‘binning’ of values of the ranking function f .
The idea of the solution is that after the projection (via rank-
ing function), all examples with the same ordinal category
label should, in the ideal case, fall into the same value region
or bin.

Let us assume that for each ordinal label u we have
a bin defined by a lower bound value bu−1 and an upper
bound value bu. Our objective is to find a projection f from
the feature space to the space of real numbers, for which
instances that are in the same ordinal category fall after the
projection into the same bin. More formally, for any data
instance xi and its ordinal label ui, we expect to obtain a
function f(·) so that bin(f(xi)) = ui, where bin(·) is a
function where the argument is a prediction value and the
return value is the bin where this prediction value belongs.
Then each data example with ordinal label u should be
projected such that its value is greater than all bin bounds bj
such that j < u and less than all bk such that k ≥ u. Since
the ordinal label and the projection of its feature vector to the
bin are always expected to match, the projection should have
the same greater-or-less relationship with all bin boundaries
for other ordinal categories. Formally, for a data instance x
and Likert-scale label u, we expect to learn a function so that



f(·) so that bj < f(x) for any j < u and bk > f(x) for any
k ≥ u.

However, in reality, we cannot expect that all the con-
straints will always be satisfied with a linear projection func-
tion. Hence, we permit violations of constraints but penalize
them via bin-sample loss function. By adding the constraints
for standard binary class labels, we can formulate the follow-
ing optimization problem:

minw,w0,b,η,ξ
wTw

2
+B

N∑
i=1

ηi + C

m−1∑
j=1

N∑
i=1

ξj,i

yi(wT xi + w0) ≥ 1− ηi ∀i
zj,i(wT xi − bj) ≥ 1− ξj,i ∀i, j

ηi, ξj,i ≥ 0 ∀i, j

where j = 1, 2, . . . ,m − 1 indexes bin bounds in b,
and i = 1, 2, . . . , N indexes data entries. The first term in
the objective function is the regularization term, the second
term (single sum) defines the hinge loss on binary labels,
and the third term (double sum) defines the loss function
between each pair of bin bound and each Likert-scale label.
ηi and ξj,i are slack variables permitting violations of binary
class and soft-label bins respectively. B and C are constants
weighing the objective function terms. zj,i is an indicator
whether the projection of feature vector xi is supposed to
be greater or less than the bin bound bj . If j < ui,
indicating the projection of xi is supposed to be greater than
bj , zj,i = 1, otherwise zj,i = −1. In this model, the number
of constraints is reduced to roughlyM = mN . Since Likert-
scales typically comes as from 2 to 10 ordering categories
with 5 or 7 being the most common, we have m << N .
Considering the O(M3) complexity of convex quadratic
optimization problems, the time complexity is reduced to
O(m3N3).

Removing empty bins One practical concern related to the
above optimization problem occurs when the size |L| of
the labeled data is small, and some Likert-scale categories
are absent in L. Fortunately, this problem has an easy
fix. If a Likert-scale category is missing in L, it is not
necessary to consider it, and we should only try to enforce
ordering constraints among non-empty ordinal categories.
Effectively this translates to a smaller number of bins and
their boundaries in the optimization problem.

3.3 Active learning The next challenge is to embed the
above learning algorithm in a practical active learning frame-
work. The heart of any active learning method is a strategy
that is used to select examples to be queried next. In this
work, we propose and experiment with a strategy called ex-
pected performance change (EPC) that evaluates and mea-

sures the potential of an unlabeled data instance to change
the model by estimating its impact on instance predictions.
Expected performance change (EPC) is closely related to ex-
pected model change (EMC) proposed by [24, 25] where the
potential of an unlabeled data instance is estimated from the
change in the model weights after it is assumed to be labeled.
Another difference is that our expected performance change
(EPC) uses a Bayesian posterior to calculate the expectation.

Expected performance change Briefly, the Expected Per-
formance Change (EPC) of an unlabeled sample x can be
measured as follows: Suppose that, for the labeled data L,
we have already trained a model fL. For x, there arem possi-
ble Likert-scale labels (m is the number of Likert-scale ordi-
nal categories). For each possible Likert-scale label u, if we
add 〈x, u〉 into L, we will obtain an add-one model fL∪〈x,u〉.
The performance change of fL∪〈x,u〉 compared with fL is
denoted as δ(x, u). Since there are m possible Likert-scale
labels, we will have m performance changes δ(x, u) where
u = 1, 2, . . . ,m, each corresponding to one add-one model.
The Expected Performance Change ∆(x) of x is then calcu-
lated as:

∆(x) =

m∑
u=1

p(u|x)δ(x, u)

Measuring performance change One critical question of
the Expected Performance Change framework is, how to
measure the performance change δ(x, u) for an unlabeled
example x and one possible label u the example can be
assigned to. In this work, we adopt the measurement
based on the discrepancy of the predictions over unlabeled
data for cases before and after x and u are added into
L and used to learn a new model. More formally, this
measurement is calculated as follows: Let the model for
L be fL, and the model after 〈x, u〉 is added to L be
fL∪〈x,u〉. For any unlabeled sample xi, we measure the
performance change as the discrepancy of the bin predictions
||bin(fL(xi)) − bin(fL∪〈x,u〉(xi))||. By considering every
unlabeled example, the net performance change δ(x, u) can
be calculated by averaging its impact on all unlabeled data
as:

δ(x, u) =
∑
i∈U
||bin(fL(xi))− bin(fL∪〈x,u〉(xi))||

where i indexes all examples in the unlabeled dataset U .

Approximating the expectation After calculating perfor-
mance changes δ(x, u) for all possible ordinal labels u, one
important question is how to calculate the expectation need-



ed for the expected performance change score. In this work,
we adopt a Bayesian method to estimate the expectation.

Our calculation is based on the model fL learned from
the labeled set L of data instances. Briefly, a model fL
together with its bin boundaries defines a model for all
ordinal categories. We can use this model and its bins to
estimate the empirical distribution of labeled examples in
these bins. More specifically, each bin that is associated
with the projection fL may receive (labeled) examples from
all categories (that is, even categories that do not match the
category corresponding to the bin). Assuming there are m
categories, in general, each bin may see examples from m
different categories. We can use the observed counts of the
examples with these categories that fall into the same bin
to calculate the necessary expectations for an unlabeled data
point x. Briefly, we take an unlabeled data point and use the
projection fL to identify the bin it falls into. The count of
category labels for this bin is then used to approximate their
probability distribution and hence calculate the expected
value.

More formally, let x be an unlabeled instance we are
considering to query and j = bin(fL(x)) be the bin category
the instance falls into based on fL. Our objective is to
estimate the probability distribution (pj1, p

j
2, . . . , p

j
m) for bin

j, which represents the probability of an example in bin j to
be assigned to one of them Likert-scale categories. One way
to estimate this probability would be to use the maximum
likelihood approach and calculate the probabilities from
counts of Likert-scale labels qj1, q

j
2, . . . , q

j
m in L that fall

into bin j, and by assuming they follow a multinomial
distribution with parameters (pj1, p

j
2, . . . , p

j
m). However,

this estimate may not work well if the number of labeled
examples is small which would lead to a biased estimate.
Hence, instead of the maximum likelihood based estimate,
we base our estimate on the posterior distribution.

To estimate the posterior distribution of
(pj1, p

j
2, . . . , p

j
m) we use a Dirichlet prior which is the

conjugate choice for the multinomial sampling distri-
bution. Since we do not have any prior information
about the distribution of categories in the bin; we choose
Dirichlet(1, 1, . . . , 1) where all Likert-scale categories are
assigned the same prior probability. Given the conjugate
prior, the posterior of (pj1, p

j
2, . . . , p

j
m) for L follows a

Dirichlet distribution:

(pj1, p
j
2, . . . , p

j
m)L ∼ Dirichlet(1+ qj1, 1+ qj2, . . . , 1+ qjm).

Given the posterior distribution, we can approximate the
probability p(u|x), that is, the probability that x is assigned
label u, by the expected value of E(pju) from the posterior
distribution:

E(pju) =
(1 + qju)

(m+
∑m
i=1 q

j
i )
.

Substituting the result, we can finally calculate the
Expected Performance Change for an unlabeled sample x as:

∆(x) =

m∑
u=1

p(u|x)δ(x, u)

=

m∑
u=1

(1 + qju)

(m+
∑m
i=1 q

j
i )
δ(x, u)

Counting to preserve ordering information One concern
of adopting a multinomial distribution to model the data is
that all categories in the multinomial model are assumed to
be independent. However, our approach uses Likert-scale
categories, which are ordinal categories. One way to modi-
fy the multinomial model to reflect such dependencies is to
use partial counts and let categories close to the category as-
signed for example xi take partial credit for it. To implement
this idea we modify the counts qj1, q

j
2, . . . , q

j
m associated bin

j as follows: if an observed example xi that falls into bin j
is assigned a Likert-scale label ui then it contributes 1 to the
count qjui

and 0.5 to the counts qjui−1 and qjui+1 (that is, two
Likert-scale categories next to the observed category).

3.4 Training of add-one models Another critical ques-
tion is the running time complexity to obtain an add-one
model fL∪〈x,u〉 after adding an unlabeled sample x and
possible Likert-scale label u into labeled data L. If we
train the add-one model from scratch, the time complex-
ity is O(m3|L|3) where m is the number of Likert-scale
labels. Since, in order to select the sample to be labeled
next, we need to obtain an add-one model for each unla-
beled sample and each possible Likert-scale label, the total
time complexity is O(m4|L|3|U |) (U is the unlabeled da-
ta), which is extravagant and does not scale well as the size
of L grows. To solve this problem, we develop an incre-
mental solver learning classifiers from ordinal category feed-
back. This solution extends the incremental SVM solver pro-
posed in [26]. By using the incremental solver when training
fL∪〈x,u〉, instead of starting from scratch, we always start
from fL, which remarkably reduces the total time complexi-
ty to O(m4|L|2|U |).

4 Experiments and Results
We test our approach on both synthetic and real-world da-
ta. The first set of experiments uses data from several U-
CI regression and ordinal classification datasets which we
transform to problems with Likert-scale categories. The sec-
ond experiment works with real-world clinical data with true
(human assessed) ordinal categorical labels.

4.1 Experiments on synthetic UCI-based data In this
part, we adapted three UCI regression datasets (Housing,



Figure 1: Performance of our active learning framework on six UCI datasets.

Dataset # Samples # Features # Categories
Housing 506 13 Regression
Concrete 1030 9 Regression

Crime 1994 122 Regression
Breast Cancer 699 10 6

Wine Red 1599 12 11
Wine White 4898 12 11

Table 1: Properties of UCI data in synthetic experiments.

Concrete, and Crime) and three UCI ordinal classification
datasets (Cancer, Wine Red, and Wine White) that are
summarized in Table 1 as follows.

For the regression datasets, we discretized the real-
valued outputs into 7 Likert-scale levels by dividing the
range of output values into equal length bins. We defined
a binary class label by considering the examples that fell
into three higher-value bins as representatives of class 1
and examples in four lower-value bins as examples from
class 0. For example, in Housing dataset this discretization
would represent houses with high attractiveness (class 1),
and houses with low attractiveness (class 0) and Likert
scales represent different degrees of attractiveness. The UCI
ordinal classification datasets come with multiple (ordinal)
classes so that they can be used as Likert-scale levels directly.
The binary thresholds can be set according to the meaning of
these ordinal classes. For example, Breast Cancer dataset
contains six ordinal classes {1, 2, 3, 4, 5, 6}, where {1, 2}

are healthy, and {3, 4, 5, 6} represent the different stages of
malignancy, so we map Likert-scale levels 3,4,5,6 to Class 1
and the rest to Class 0.

The objective of our experiments is to demonstrate the
benefits of our active learning strategy for models of Likert-
scale labels by comparing it to different classification models
trained on Likert-scale versus binary labels, and labeling
strategies based on the random versus active sampling. Our
experiments compare the following models:

BinarySvm: The standard linear SVM with the hinge
loss and quadratic regularization factor trained on examples
with binary labels only that were sampled randomly.

BinarySvmUnc: The standard linear SVM with the
hinge loss and quadratic regularization factor trained on
examples with binary labels only, but sampled actively based
on the uncertainty sampling selection criterion.

BinarySvmAct: The standard linear SVM with the
hinge loss and quadratic regularization factor trained on ex-
amples with binary labels only, but sampled actively based
on the expected performance change (EPC) selection crite-
rion. To apply the criterion to binary classification settings,
we treat class 0 and class 1 as two bins.

LikertSvm: Our SVM-based for Likert-scale labels that
enforces both binary and bin-label constraints. Examples to
be labeled next, are selected randomly.

LikertSvmAct: A combination of our SVM-based for
Likert-scale labels and our Expected Performance Change
for selecting examples to be labeled next.

We evaluated the performance of the different methods



Figure 2: Performance on HIT data annotated by 3 experts.

by calculating the Area under the ROC (AUC) the learned
classification model would achieve on the test data. Hence,
each dataset before the learning was split into the training
and test set (using 2

3 and 1
3 of all data entries respectively).

The active learning considered training data only; the AUC
was always calculated on the test set. The test set perfor-
mance reflects how well the model generalizes to future da-
ta. To avoid potential train/test split biases, we repeated the
training process (splitting) and learning steps 24 times. We
report the average AUC obtained on these test sets. To test
the benefits of our active learning strategy and the impact of
Likert-scale label information on the number of data entries,
we trace the performance of all models for the different sizes
M of labeled data. Figure 1 shows the performance (AUC)
of the models on all six UCI datasets for increasing sizes of
M .

Figure 1 shows the benefit of LikertSvmAct with a com-
bination of our active learning strategy and soft labels. Both
LikertSvmAct and LikertSvm outperform BinarySvmAct,
BinarySvmUnc, and BinarySvm, indicating that soft label
models will achieve better performance than original binary
label models with the same training sizes. LikertSvmAc-
t also outperforms LikertSvm, validating the effectiveness
of our querying strategy. Meanwhile, LikertSvmAct greatly
outperforms BinarySvm, indicating the combination of ac-
tive learning and Likert-scale labels clearly raises the perfor-
mance on the same sizes of training data.

4.2 Experiments on clinical data While the experiments
on synthetic datasets appear to support the benefits of our ac-
tive learning approach based on ordinal Likert-scale labels,
it is unclear whether synthetic labels generated for the U-
CI datasets do not make any unreasonable assumptions and
whether good performance also generalizes to “true” feed-
back provided by humans. In this set of experiments, we
test the performance of the methods on a real-world clini-
cal data that were independently reviewed and assessed in
terms of soft-labels by three different experts. The target la-
bel concerns clinician’s agreement with raising an alert on

Heparin-induced thrombocytopenia (HIT), an adverse clini-
cal condition that affects the patient who is treated with hep-
arin for prolonged periods of time. The data and features for
the experiment were derived from the PCP database of Elec-
tronic records of post-cardiac surgical patients [27, 28, 29].
The clinical data consists of 50 patient state features essential
for detection of HIT. The datasets consist of 579, 571, and
573 labeled patient state instances for Expert 1, 2 and 3 (see
[30]), respectively. The labels include Likert-scale labels on
four levels indicating the agreement, weak agreement, weak
disagreement, and disagreement of the expert with the HIT
alert.

Figure 2 shows the AUC performance of the same meth-
ods and models as used in the previous section on three
expert-annotated HIT datasets. The performance of Lik-
ertSvmAct outperforms LikertSvm, BinarySvmAct, Bina-
rySvm on all three datasets, confirming good performance
of our method on synthetic data and the benefit of both the
Likert-scale labels and active learning for a more efficient
training of binary classification models.

5 Conclusion
In this work, we proposed a new framework for learning
binary classification models from human feedback that uti-
lizes a refined human feedback expressed in terms of ordi-
nal Likert-scale categories and novel active learning strategy.
Our results on synthetic and real-world clinical data show
that our learning framework (1) can learn more efficiently
and from a smaller number of examples than existing meth-
ods (2) is better than models that rely on Likert-scale labels
or active learning individually.
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