Functions II

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Functions

- **Definition**: Let A and B be two sets. A function from A to B, denoted \(f : A \rightarrow B \), is an assignment of exactly one element of B to each element of A. We write \(f(a) = b \) to denote the assignment of b to an element a of A by the function f.
Functions

- **Definition**: Let A and B be two sets. A function from A to B, denoted $f : A \rightarrow B$, is an assignment of exactly one element of B to each element of A. We write $f(a) = b$ to denote the assignment of b to an element a of A by the function f.

![Diagram]

Injective function

Definition: A function f is said to be **one-to-one**, or **injective**, if and only if $f(x) = f(y)$ implies $x = y$ for all x, y in the domain of f. A function is said to be an injection if it is one-to-one.

Alternative: A function is one-to-one if and only if $f(x) \neq f(y)$, whenever $x \neq y$. This is the contrapositive of the definition.

![Diagram]
Surjective function

Definition: A function \(f \) from \(A \) to \(B \) is called **onto**, or **surjective**, if and only if for every \(b \in B \) there is an element \(a \in A \) such that \(f(a) = b \).

Alternative: all co-domain elements are covered

![Diagram of surjective function]

Bijective functions

Definition: A function \(f \) is called a **bijection** if it is both one-to-one (injection) and onto (surjection).

![Diagram of bijective function]
Bijective functions

Example 1:
• Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$
 – Define f as
 • $1 \rightarrow c$
 • $2 \rightarrow a$
 • $3 \rightarrow b$
• Is f a bijection?
• Yes. It is both one-to-one and onto.
Example 2:
• Define $g : W \rightarrow W$ (whole numbers), where
 $g(n) = \lfloor n/2 \rfloor$ (floor function).

 - $0 \rightarrow \lfloor 0/2 \rfloor = \lfloor 0 \rfloor = 0$
 - $1 \rightarrow \lfloor 1/2 \rfloor = \lfloor 1/2 \rfloor = 0$
 - $2 \rightarrow \lfloor 2/2 \rfloor = \lfloor 1 \rfloor = 1$
 - $3 \rightarrow \lfloor 3/2 \rfloor = \lfloor 3/2 \rfloor = 1$

 ...

• Is g a bijection?

– No. g is onto but not 1-1 ($g(0) = g(1) = 0$ however $0 \neq 1$.)
Bijective functions

Theorem: Let \(f \) be a function \(f: A \rightarrow A \) from a set \(A \) to itself, where \(A \) is finite. Then \(f \) is one-to-one if and only if \(f \) is onto.

Assume

\(A \text{ is finite and } f \text{ is one-to-one (injective)} \)

- Is \(f \) an **onto function (surjection)**?

Proof:

\(A \text{ is finite and } f \text{ is one-to-one (injective)} \)

- Is \(f \) an onto function (surjection)?

 - **Yes.** Every element points to exactly one element. Injection assures they are different. So we have \(|A|\) different elements \(A \) points to. Since \(f: A \rightarrow A \) the co-domain is covered thus the function is also a surjection (and a bijection)

\(A \text{ is finite and } f \text{ is an onto function} \)

- Is the function one-to-one?
Bijective functions

Theorem. Let f be a function f: A \(\rightarrow\) A from a set A to itself, where A is finite. Then f is one-to-one if and only if f is onto.

Proof:

\(\rightarrow\) **A is finite and f is one-to-one (injective)**

- Is f an onto function (surjection)?
- **Yes.** Every element points to exactly one element. Injection assures they are different. So we have \(|A|\) different elements A points to. Since f: A \(\rightarrow\) A the co-domain is covered thus the function is also a surjection (and a bijection)

\(\leftarrow\) **A is finite and f is an onto function**

- Is the function one-to-one?
- **Yes.** Every element maps to exactly one element and all elements in A are covered. Thus the mapping must be one-to-one

Please note the above is not true when A is an infinite set.

- **Example:**
 - \(f: \mathbb{Z} \rightarrow \mathbb{Z}\), where \(f(z) = 2 \times z\).
 - f is one-to-one but not onto.
 - \(1 \rightarrow 2\)
 - \(2 \rightarrow 4\)
 - \(3 \rightarrow 6\)
 - 3 has no pre-image.
Functions on real numbers

Definition: Let f_1 and f_2 be functions from A to \mathbb{R} (reals). Then $f_1 + f_2$ and $f_1 \cdot f_2$ are also functions from A to \mathbb{R} defined by

- $(f_1 + f_2)(x) = f_1(x) + f_2(x)$
- $(f_1 \cdot f_2)(x) = f_1(x) \cdot f_2(x)$.

Examples:
- Assume
 - $f_1(x) = x - 1$
 - $f_2(x) = x^3 + 1$
 then
 - $(f_1 + f_2)(x) = x^3 + x$
 - $(f_1 \cdot f_2)(x) = x^4 - x^3 + x - 1$.

Increasing and decreasing functions

Definition: A function f whose domain and codomain are subsets of real numbers is **strictly increasing** if $f(x) > f(y)$ whenever $x > y$ and x and y are in the domain of f. Similarly, f is called **strictly decreasing** if $f(x) < f(y)$ whenever $x > y$ and x and y are in the domain of f.

Example:
- Let $g : \mathbb{R} \rightarrow \mathbb{R}$, where $g(x) = 2x - 1$. Is it increasing?
Increasing and decreasing functions

Definition: A function f whose domain and codomain are subsets of real numbers is **strictly increasing** if f(x) > f(y) whenever x > y and x and y are in the domain of f. Similarly, f is called **strictly decreasing** if f(x) < f(y) whenever x > y and x and y are in the domain of f.

Example:
- Let g : \(\mathbb{R} \rightarrow \mathbb{R} \), where \(g(x) = 2x - 1 \). Is it increasing?
- **Proof.**
 - For \(x > y \) holds \(2x > 2y \) and subsequently \(2x-1 > 2y-1 \)
 - Thus g is strictly increasing.

Note: Strictly increasing and strictly decreasing functions are one-to-one.

Why?
Increasing and decreasing functions

Definition: A function f whose domain and codomain are subsets of real numbers is **strictly increasing** if $f(x) > f(y)$ whenever $x > y$ and x and y are in the domain of f. Similarly, f is called **strictly decreasing** if $f(x) < f(y)$ whenever $x > y$ and x and y are in the domain of f.

Note: Strictly increasing and strictly decreasing functions are one-to-one.

Why?
One-to-one function: A function is one-to-one if and only if $f(x) \neq f(y)$, whenever $x \neq y$.

Identity function

Definition: Let A be a set. The **identity function** on A is the function $i_A : A \rightarrow A$ where $i_A(x) = x$.

Example:
- Let $A = \{1,2,3\}$

Then:
- $i_A(1) = ?$
Identity function

Definition: Let A be a set. The *identity function* on A is the function $i_A: A \rightarrow A$ where $i_A(x) = x$.

Example:
- Let $A = \{1,2,3\}$
- Then:
 - $i_A(1) = 1$
 - $i_A(2) = 2$
 - $i_A(3) = 3$.

Bijective functions

Definition: A function f is called a *bijection* if it is both one-to-one and onto.
Inverse functions

Definition: Let \(f \) be a bijection from set \(A \) to set \(B \). The inverse function of \(f \) is the function that assigns to an element \(b \) from \(B \) the unique element \(a \) in \(A \) such that \(f(a) = b \). The inverse function of \(f \) is denoted by \(f^{-1} \). Hence, \(f^{-1}(b) = a \), when \(f(a) = b \). If the inverse function of \(f \) exists, \(f \) is called invertible.

Note: If \(f \) is not a bijection then it is not possible to define the inverse function of \(f \). Why?

Assume \(f \) is not one-to-one:

?
Inverse functions

Note: if \(f \) is not a bijection then it is not possible to define the inverse function of \(f \). **Why?**

Assume \(f \) is not one-to-one:
Inverse is not a function. One element of \(B \) is mapped to two different elements.

Inverse functions

Note: if \(f \) is not a bijection then it is not possible to define the inverse function of \(f \). **Why?**

Assume \(f \) is not onto:

Inverse functions

Note: if \(f \) is not a bijection then it is not possible to define the inverse function of \(f \). Why?

Assume \(f \) is not onto:
Inverse is not a function. One element of \(B \) is not assigned any value in \(B \).

Example 1:
- Let \(A = \{1,2,3\} \) and \(i_A \) be the identity function

\[
\begin{align*}
 i_A(1) &= 1 & i_A^{-1}(1) &= 1 \\
 i_A(2) &= 2 & i_A^{-1}(2) &= 2 \\
 i_A(3) &= 3 & i_A^{-1}(3) &= 3
\end{align*}
\]

- Therefore, the inverse function of \(i_A \) is \(i_A \).
Inverse functions

Example 2:
• Let \(g : \mathbb{R} \rightarrow \mathbb{R} \), where \(g(x) = 2x - 1 \).
• What is the inverse function \(g^{-1} \)?

Approach to determine the inverse:
\[
y = 2x - 1 \quad \Rightarrow \quad y + 1 = 2x \\
\quad \Rightarrow \quad \frac{y+1}{2} = x
\]
• Define \(g^{-1}(y) = \frac{y+1}{2} \)

Test the correctness of inverse:
• \(g(3) = \ldots \)
Inverse functions

Example 2:
• Let \(g : \mathbb{R} \rightarrow \mathbb{R} \), where \(g(x) = 2x - 1 \).
• What is the inverse function \(g^{-1} \)?

Approach to determine the inverse:
\[
y = 2x - 1 \implies y + 1 = 2x \\
\implies (y+1)/2 = x
\]
• Define \(g^{-1}(y) = x = (y+1)/2 \)

Test the correctness of inverse:
• \(g(3) = 2*3 - 1 = 5 \)
• \(g^{-1}(5) = (5+1)/2 = 3 \)
• \(g(10) = \)
Inverse functions

Example 2:
• Let $g : \mathbb{R} \rightarrow \mathbb{R}$, where $g(x) = 2x - 1$.
• What is the inverse function g^{-1}?

Approach to determine the inverse:

\[
y = 2x - 1 \implies y + 1 = 2x \\
=> (y+1)/2 = x
\]
• Define $g^{-1}(y) = x = (y+1)/2$

Test the correctness of inverse:

• $g(3) = 2*3 - 1 = 5$
• $g^{-1}(5) = (5+1)/2 = 3$
• $g(10) = 2*10 - 1 = 19$
• $g^{-1}(19) = (19+1)/2 = 10$.

Composition of functions

Definition: Let \(f \) be a function from set \(A \) to set \(B \) and let \(g \) be a function from set \(B \) to set \(C \). The *composition of the functions* \(g \) and \(f \), denoted by \(g \circ f \) is defined by

\[
(g \circ f)(a) = g(f(a)).
\]

Example 1:

- Let \(A = \{1,2,3\} \) and \(B = \{a,b,c,d\} \)

\[
g : A \rightarrow A, \quad f : A \rightarrow B
\]

\[
1 \rightarrow 3, \quad 1 \rightarrow b \\
2 \rightarrow 1, \quad 2 \rightarrow a \\
3 \rightarrow 2, \quad 3 \rightarrow d
\]

\[
f \circ g : A \rightarrow B:
\]

- \(1 \rightarrow \)
Composition of functions

Example 1:
• Let $A = \{1,2,3\}$ and $B = \{a,b,c,d\}$

\[
g : A \rightarrow A, \quad f : A \rightarrow B
\]
\[
1 \rightarrow 3 \quad 1 \rightarrow b
2 \rightarrow 1 \quad 2 \rightarrow a
3 \rightarrow 2 \quad 3 \rightarrow d
\]

$f \circ g : A \rightarrow B$:
• $1 \rightarrow d$
• $2 \rightarrow$
• $3 \rightarrow$
Composition of functions

Example 1:
• Let \(A = \{1,2,3\} \) and \(B = \{a,b,c,d\} \)

\[
\begin{align*}
g & : A \to A, \quad f: A \to B \\
1 & \mapsto 3 \quad 1 \mapsto b \\
2 & \mapsto 1 \quad 2 \mapsto a \\
3 & \mapsto 2 \quad 3 \mapsto d \\
\end{align*}
\]

\(f \circ g : A \to B: \)
• \(1 \mapsto d \)
• \(2 \mapsto b \)
• \(3 \mapsto a \)

Composition of functions

Example 2:
• Let \(f \) and \(g \) be two functions from \(Z \to Z \), where
 • \(f(x) = 2x \) and \(g(x) = x^2 \).
 • \(f \circ g : Z \to Z \)

\[
\begin{align*}
(f \circ g)(x) &= f(g(x)) \\
&= f(x^2) \\
&= 2(x^2)
\end{align*}
\]

• \(g \circ f : Z \to Z \)
• \((g \circ f)(x) = ? \)
Composition of functions

Example 2:
- Let \(f \) and \(g \) be two functions from \(\mathbb{Z} \) to \(\mathbb{Z} \), where
- \(f(x) = 2x \) and \(g(x) = x^2 \).
- \(f \circ g : \mathbb{Z} \rightarrow \mathbb{Z} \)
- \((f \circ g)(x) = f(g(x)) = f(x^2) = 2(x^2)\)
- \(g \circ f : \mathbb{Z} \rightarrow \mathbb{Z} \)
- \((g \circ f)(x) = g(f(x)) = g(2x) = (2x)^2\) Note that the order of the function composition matters

Composition of functions

Example 3:
- \((f \circ f^{-1})(x) = x \) and \((f^{-1} \circ f)(x) = x\), for all \(x \).
- Let \(f : \mathbb{R} \rightarrow \mathbb{R} \), where \(f(x) = 2x - 1 \) and \(f^{-1}(x) = \frac{(x+1)}{2} \).
- \((f \circ f^{-1})(x)= f(f^{-1}(x)) = f(\frac{(x+1)}{2}) = 2(\frac{(x+1)}{2}) - 1 = (x+1) - 1 = x\)
Composition of functions

Example 3:
- \((f \circ f^{-1})(x) = x\) and \((f^{-1} \circ f)(x) = x\), for all \(x\).

Let \(f : \mathbb{R} \to \mathbb{R}\), where \(f(x) = 2x - 1\) and \(f^{-1}(x) = (x+1)/2\).

- \((f \circ f^{-1})(x) = f(f^{-1}(x))\)
 \[= f\left(\frac{x+1}{2}\right)\]
 \[= 2\left(\frac{x+1}{2}\right) - 1\]
 \[= (x+1) - 1\]
 \[= x\]

- \((f^{-1} \circ f)(x) = f^{-1}(f(x))\)
 \[= f^{-1}(2x - 1)\]
 \[= (2x)/2\]
 \[= x\]

Some functions

Definitions:
- The floor function assigns a real number \(x\) the largest integer that is less than or equal to \(x\). The floor function is denoted by \(\lfloor x \rfloor\).
- The ceiling function assigns to the real number \(x\) the smallest integer that is greater than or equal to \(x\). The ceiling function is denoted by \(\lceil x \rceil\).

Other important functions:
- Factorials: \(n! = n(n-1)\) such that \(1! = 1\)