Predicate logic

Propositional logic: review

• **Propositional logic**: a formal language for making logical inferences
• A **proposition** is a statement that is either true or false.
• A **compound proposition** can be created from other propositions using logical connectives
• **The truth of a compound proposition** is defined by truth values of elementary propositions and the meaning of connectives.
• **The truth table for a compound proposition**: table with entries (rows) for all possible combinations of truth values of elementary propositions.
Tautology and Contradiction

What is a tautology?
- A compound proposition that is always true for all possible truth values of the propositions is called a **tautology**.

Example: \(p \lor \neg p \) is a **tautology**.

<table>
<thead>
<tr>
<th>(p)</th>
<th>(\neg p)</th>
<th>(p \lor \neg p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

What is a contradiction?
- A compound proposition that is always false is called a **contradiction**.

Example: \(p \land \neg p \) is a **contradiction**.

<table>
<thead>
<tr>
<th>(p)</th>
<th>(\neg p)</th>
<th>(p \land \neg p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>
Equivalence

• How do we determine that two propositions are equivalent? Their truth values in the truth table are the same.
• Example: \(p \rightarrow q \) is equivalent to \(\neg q \rightarrow \neg p \) (contrapositive)

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>p (\rightarrow) q</th>
<th>(\neg q \rightarrow \neg p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

• Equivalent statements are important for logical reasoning since they can be substituted and can help us to make a logical argument.

Logical equivalence

• Definition: The propositions p and q are called logically equivalent if \(p \leftrightarrow q \) is a tautology (alternately, if they have the same truth table). The notation \(p \leftrightarrow q \) denotes p and q are logically equivalent.

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>a (\rightarrow) b</th>
<th>(\neg a \rightarrow \neg b)</th>
<th>((a \rightarrow b) \leftrightarrow (\neg a \rightarrow \neg b))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Important logical equivalences

• **Identity**
 - \(p \land T \iff p \)
 - \(p \lor F \iff p \)

• **Domination**
 - \(p \lor T \iff T \)
 - \(p \land F \iff F \)

• **Idempotent**
 - \(p \lor p \iff p \)
 - \(p \land p \iff p \)

• **Double negation**
 - \(\neg(\neg p) \iff p \)

• **Commutative**
 - \(p \lor q \iff q \lor p \)
 - \(p \land q \iff q \land p \)

• **Associative**
 - \((p \lor q) \lor r \iff p \lor (q \lor r) \)
 - \((p \land q) \land r \iff p \land (q \land r) \)
Important logical equivalences

• **Distributive**

 - \(p \lor (q \land r) \iff (p \lor q) \land (p \lor r) \)

 - \(p \land (q \lor r) \iff (p \land q) \lor (p \land r) \)

• **De Morgan**

 - \(\neg (p \lor q) \iff \neg p \land \neg q \)

 - \((p \land q) \iff \neg p \lor \neg q \)

• **Other useful equivalences**

 - \(p \lor \neg p \iff T \)

 - \(p \land \neg p \iff F \)

 - \(p \rightarrow q \iff (\neg p \lor q) \)

Showing logical equivalence

Example: Show \((p \land q) \rightarrow p\) is a tautology
In other words \(((p \land q) \rightarrow p \iff T) \)

Proof via truth table:

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(p \land q)</th>
<th>((p \land q) \rightarrow p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Showing logical equivalences

- **Equivalences can be used in proofs.** A proposition or its part can be transformed using equivalences and some conclusion can be reached.

Example: Show that \((p \land q) \rightarrow p\) is a tautology.
- Proof: (we must show \((p \land q) \rightarrow p \iff T\))

\[
(p \land q) \rightarrow p \iff \neg(p \land q) \lor p
\]
- Useful

\[
\iff [\neg p \lor \neg q] \lor p
\]
- DeMorgan

\[
\iff [\neg q \lor \neg p] \lor p
\]
- Commutative

\[
\iff \neg q \lor [\neg p \lor p]
\]
- Associative

\[
\iff \neg q \lor [T]
\]
- Useful

\[
\iff T
\]
- Domination

Propositional logic

- **Definition:**
 - A **proposition** is a statement that is either true or false.

- **Examples:**
 - Pitt is located in the Oakland section of Pittsburgh.
 - \(5 + 2 = 8\).
 - It is raining today
 - \(2\) is a prime number
 - If (you do not drive over 65 mph) then (you will not get a speeding ticket).

- **Not a proposition:**
 - How are you?
 - \(x + 5 = 3\)
Limitations of the propositional logic

Propositional logic: the world is described in terms of elementary propositions and their logical combinations

Elementary statements:

• Typically refer to objects, their properties and relations. But these are not explicitly represented in the propositional logic

 – Example:
 • “John is a UPitt student.”

 ![Diagram showing John is a UPitt student]

 • Objects and properties are hidden in the statement, it is not possible to reason about them

(1) Statements that must be repeated for many objects

 – In propositional logic these must be exhaustively enumerated

 • Example:
 – If John is a CS UPitt graduate then John has passed cs441

 Translation:
 – John is a CS UPitt graduate \(\Rightarrow \) John has passed cs441

 Similar statements can be written for other Upitt graduates:
 – Ann is a CS Upitt graduate \(\Rightarrow \) Ann has passed cs441
 – Ken is a CS Upitt graduate \(\Rightarrow \) Ken has passed cs441
 – ...

 • What is a more natural solution to express the above knowledge?
Limitations of the propositional logic

(1) Statements that must be repeated for many objects

• Example:
 – If John is a CS UPitt graduate then John has passed cs441

Translation:
 – John is a CS UPitt graduate \(\Rightarrow\) John has passed cs441

Similar statements can be written for other Upitt graduates:
 – Ann is a CS Upitt graduate \(\Rightarrow\) Ann has passed cs441
 – Ken is a CS Upitt graduate \(\Rightarrow\) Ken has passed cs441
 – …

• Solution: make statements with variables
 – If \(x\) is a CS Upitt graduate then \(x\) has passed cs441
 – \(x\) is a CS UPitt graduate \(\Rightarrow\) \(x\) has passed cs441

Limitations of the propositional logic

(2) Statements that define the property of the group of objects

• Example:
 – All new cars must be registered.
 – Some of the CS graduates graduate with honors.

• Solution: make statements with quantifiers
 – Universal quantifier – the property is satisfied by all members of the group
 – Existential quantifier – at least one member of the group satisfy the property
Predicate logic

Remedies the limitations of the propositional logic
• Explicitly models objects and their properties
• Allows to make statements with variables and quantify them

Basic building blocks of the predicate logic:
• Constant – models a specific object
 Examples: “John”, “France”, “7”
• Variable – represents object of specific type (defined by the universe of discourse)
 Examples: x, y
 (universe of discourse can be people, students, numbers)
• Predicate - over one, two or many variables or constants.
 – Represents properties or relations among objects
 Examples: Red(car23), student(x), married(John,Ann)

Predicates

Predicates represent properties or relations among objects

A predicate P(x) assigns a value true or false to each x depending on whether the property holds or not for x.
• The assignment is best viewed as a big table with the variable x substituted for objects from the universe of discourse

Example:
• Assume Student(x) where the universe of discourse are people
 • Student(John) …. T (if John is a student)
 • Student(Ann) …. T (if Ann is a student)
 • Student(Jane) ….. F (if Jane is not a student)
 • ...

Predicates

Assume a predicate $P(x)$ that represents the statement:

• x is a prime number

What are the truth values of:

• $P(2)$ $\ T$
• $P(3)$ $\ T$
• $P(4)$ $\ F$
• $P(5)$ $\ T$
• $P(6)$ $\ F$
• $P(7)$ $\ T$

All statements $P(2), P(3), P(4), P(5), P(6), P(7)$ are propositions

Predicates

Assume a predicate $P(x)$ that represents the statement:

• x is a prime number

What are the truth values of:

• $P(2)$ $\ T$
• $P(3)$ $\ T$
• $P(4)$ $\ F$
• $P(5)$ $\ T$
• $P(6)$ $\ F$
• $P(7)$ $\ T$

Is $P(x)$ a proposition? No. Many possible substitutions are possible.
Predicates

• Predicates can have more arguments which represent the relations between objects

Example:
• Older(John, Peter) denotes ‘John is older than Peter’
 – this is a proposition because it is either true or false
• Older(x,y) – ‘x is older than y’
 – not a proposition, but after the substitution it becomes one

Predicates

• Predicates can have more arguments which represent the relations between objects

Example:
• Let Q(x,y) denote ‘x+5 > y’
 – Is Q(x,y) a proposition?
Predicates

- Predicates can have **more arguments** which represent the **relations between objects**

Example:
- Let \(Q(x,y) \) denote ‘\(x + 5 > y \)’
 - Is \(Q(x,y) \) a proposition? **No!**
 - Is \(Q(3,7) \) a proposition? **Yes.** It is true.
 - What is the truth value of:
 - \(Q(3,7) \) \(T \)
 - \(Q(1,6) \) \(F \)
 - \(Q(2,2) \) \(T \)
 - Is \(Q(3,y) \) a proposition? **No!** We cannot say if it is true or false.

Compound statements in predicate logic

Compound statements are obtained via logical connectives

Examples:
- \(\text{Student}(\text{Ann}) \land \text{Student}(\text{Jane}) \)
 - **Translation:** “Both Ann and Jane are students”
 - **Proposition:** yes.
- \(\text{Country}(\text{Sienna}) \lor \text{River}(\text{Sienna}) \)
 - **Translation:** “Sienna is a country or a river”
 - **Proposition:** yes.
- \(\text{CS-major}(x) \rightarrow \text{Student}(x) \)
 - **Translation:** “if \(x \) is a CS-major then \(x \) is a student”
 - **Proposition:** no.
Predicates

Important:
• statement P(x) is not a proposition since there are more objects it can be applied to
This is the same as in propositional logic …

… But the difference is:
• predicate logic allows us to explicitly manipulate and substitute for the objects
• Predicate logic permits quantified sentences where variables are substituted for statements about the group of objects

Quantified statements

Predicate logic lets us to make statements about groups of objects
• To do this we use special quantified expressions

Two types of quantified statements:
• universal
 Example: ‘all CS Upitt graduates have to pass cs441’
 – the statement is true for all graduates
• existential
 Example: ‘Some CS Upitt students graduate with honor.’
 – the statement is true for some people
Universal quantifier

Defn: The universal quantification of \(P(x) \) is the proposition:
"\(P(x) \) is true for all values of \(x \) in the domain of discourse." The notation \(\forall x \ P(x) \) denotes the universal quantification of \(P(x) \), and is expressed as for every \(x \), \(P(x) \).

Example:
- Let \(P(x) \) denote \(x > x - 1 \).
- What is the truth value of \(\forall x \ P(x) \)?
- Assume the universe of discourse of \(x \) is all real numbers.
- **Answer:** Since every number \(x \) is greater than itself minus 1. Therefore, \(\forall x \ P(x) \) is true.

Quantification converts a propositional function into a **proposition** by binding a variable to a set of values from the universe of discourse.

Example:
- Let \(P(x) \) denote \(x > x - 1 \).
- Is \(P(x) \) a proposition? **No.** Many possible substitutions.
- Is \(\forall x \ P(x) \) a proposition? **Yes.** True if for all \(x \) from the universe of discourse \(P(x) \) is true.
Universally quantified statements

Predicate logic lets us make statements about groups of objects

Universally quantified statement

- CS-major(x) → Student(x)
 - **Translation:** “if x is a CS-major then x is a student”
 - **Proposition:** no.

- ∀x CS-major(x) → Student(x)
 - **Translation:** “(For all people it holds that) if a person is a CS-major then she is a student.”
 - **Proposition:** yes.

Existential quantifier

Definition: The *existential quantification* of P(x) is the proposition "There exists an element in the domain (universe) of discourse such that P(x) is true." The notation ∃x P(x) denotes the existential quantification of P(x), and is expressed as there is an x such that P(x) is true.

Example 1:

- Let T(x) denote x > 5 and x is from Real numbers.
- What is the truth value of ∃x T(x)?
- **Answer:**
 - Since 10 > 5 is true. Therefore, it is true that ∃x T(x).
Existential quantifier

Definition: The **existential quantification** of $P(x)$ is the proposition "There exists an element in the domain (universe) of discourse such that $P(x)$ is true." The notation $\exists x P(x)$ denotes the existential quantification of $P(x)$, and is expressed as **there is an x such that $P(x)$ is true.**

Example 2:
- Let $Q(x)$ denote $x = x + 2$ where x is real numbers
- What is the truth value of $\exists x Q(x)$?
- **Answer:** Since no real number is 2 larger than itself, the truth value of $\exists x Q(x)$ is false.

Existentially quantified statements

Statements about groups of objects

Example:
- $\text{CS-Upitt-graduate (x)} \land \text{Honor-student(x)}$
 - **Translation:** “x is a CS-Upitt-graduate and x is an honor student”
 - **Proposition:** ?
Quantified statements

Statements about groups of objects

Example:
- CS-Upitt-graduate (x) ∧ Honor-student(x)
 - Translation: “x is a CS-Upitt-graduate and x is an honor student”
 - Proposition: no.

- ∃ x CS-Upitt-graduate (x) ∧ Honor-student(x)
 - Translation: “There is a person who is a CS-Upitt-graduate and who is also an honor student.”
 - Proposition: yes.
Summary of quantified statements

- When \(\forall x P(x) \) and \(\exists x P(x) \) are true and false?

<table>
<thead>
<tr>
<th>Statement</th>
<th>When true?</th>
<th>When false?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\forall x P(x))</td>
<td>(P(x)) true for all (x)</td>
<td>There is an (x) where (P(x)) is false.</td>
</tr>
<tr>
<td>(\exists x P(x))</td>
<td>There is some (x) for which (P(x)) is true.</td>
<td>(P(x)) is false for all (x).</td>
</tr>
</tbody>
</table>

Suppose the elements in the universe of discourse can be enumerated as \(x_1, x_2, ..., x_N \) then:
- \(\forall x P(x) \) is true whenever \(P(x_1) \land P(x_2) \land ... \land P(x_N) \) is true
- \(\exists x P(x) \) is true whenever \(P(x_1) \lor P(x_2) \lor ... \lor P(x_N) \) is true.