

Undirected graphs

Theorem 1 (*Handshaking Theorem*): If G = (V,E) is an undirected graph with *m* edges, then

$$2m = \sum_{v \in V} \deg(v)$$

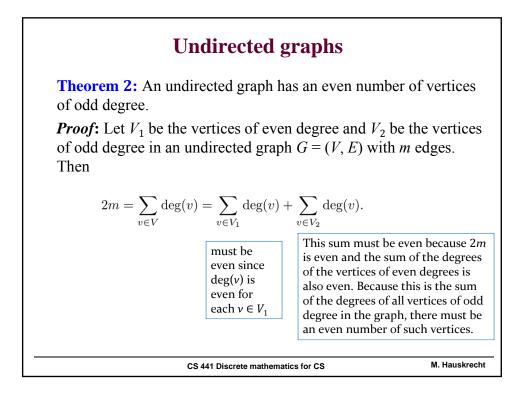
Proof:

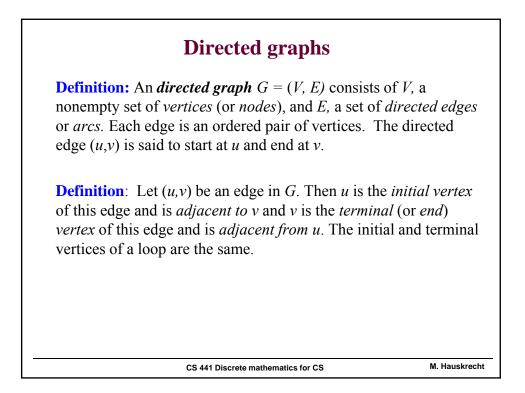
Each edge contributes twice to the degree count of all vertices. Hence, both the left-hand and right-hand sides of this equation equal twice the number of edges.

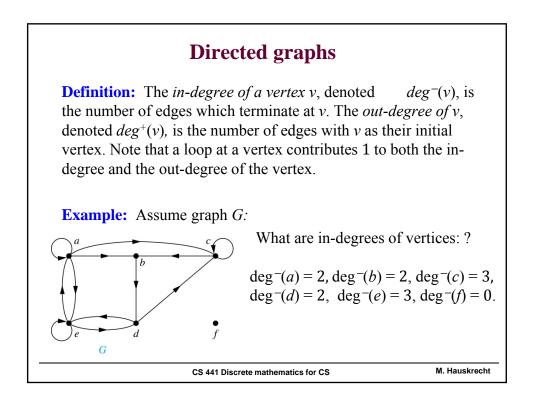
Think about the graph where vertices represent the people at a party and an edge connects two people who have shaken hands.

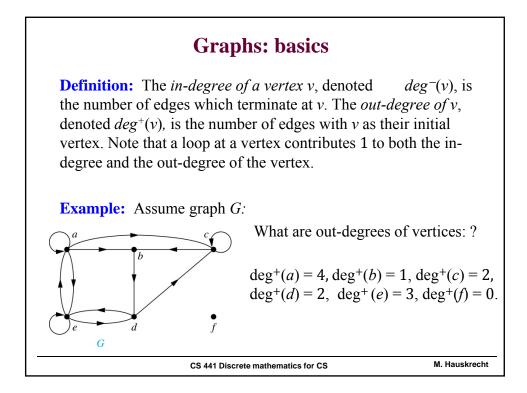
CS 441 Discrete mathematics for CS

M. Hauskrecht









Directed graphs

Theorem: Let G = (V, E) be a graph with directed edges. Then:

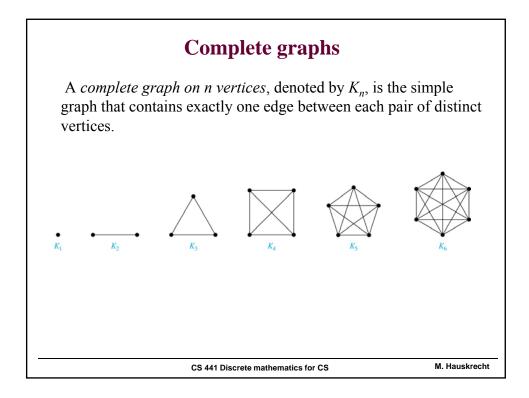
$$|E| = \sum_{v \in V} deg^{-}(v) = \sum_{v \in V} deg^{+}(v).$$

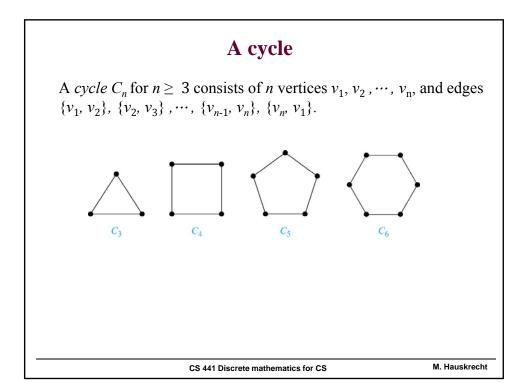
Proof:

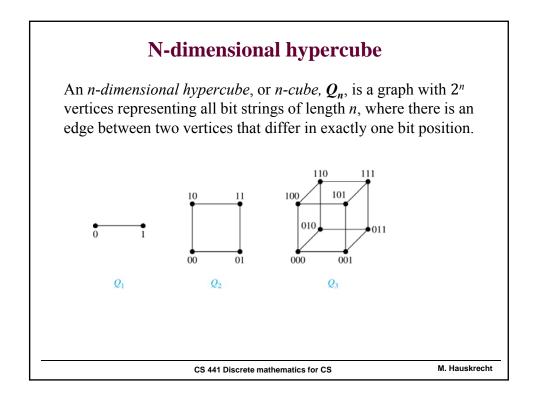
The first sum counts the number of outgoing edges over all vertices and the second sum counts the number of incoming edges over all vertices. It follows that both sums equal the number of edges in the graph.

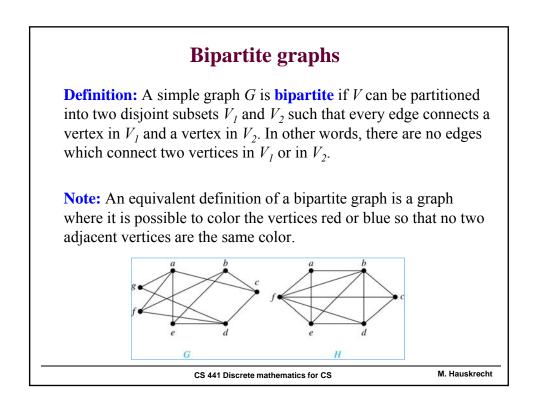
CS 441 Discrete mathematics for CS

M. Hauskrecht









Bipartite graphs

Definition: A simple graph G is **bipartite** if V can be partitioned into two disjoint subsets V_1 and V_2 such that every edge connects a vertex in V_1 and a vertex in V_2 . In other words, there are no edges which connect two vertices in V_1 or in V_2 .

Note: An equivalent definition of a bipartite graph is a graph where it is possible to color the vertices red or blue so that no two adjacent vertices are the same color.

