CS 441 Discrete Mathematics for CS
 Lecture 25

Graphs

Milos Hauskrecht

milos@cs.pitt.edu
5329 Sennott Square

Definition of a graph

- Definition: A graph $G=(V, E)$ consists of a nonempty set V of vertices (or nodes) and a set E of edges. Each edge has either one or two vertices associated with it, called its endpoints. An edge is said to connect its endpoints.
- Example:

Graphs: basics

Basic types of graphs:

- Directed graphs
- Undirected graphs

CS 441 Discrete mathematics for CS

Terminology

- In a simple graph each edge connects two different vertices and no two edges connect the same pair of vertices.
- Multigraphs may have multiple edges connecting the same two vertices. When m different edges connect the vertices u and v, we say that $\{u, v\}$ is an edge of multiplicity m.
- An edge that connects a vertex to itself is called a loop.
- A pseudograph may include loops, as well as multiple edges connecting the same pair of vertices.

Graphs

- Graphs and graph theory can be used to model:
- Computer networks
- Social networks
- Communications networks
- Information networks
- Software design
- Transportation networks
- Biological networks

Graphs

- Computer networks:
- Nodes - computers
- Edges - connections

Graph models

- Graphs can be used to model social structures based on different kinds of relationships between people or groups.
- Social network, vertices represent individuals or organizations and edges represent relationships between them.
- Useful graph models of social networks include:
- friendship graphs - undirected graphs where two people are connected if they are friends (in the real world, on Facebook, or in a particular virtual world, and so on.)

Graph models

- Useful graph models of social networks include:
- influence graphs - directed graphs where there is an edge from one person to another if the first person can influence the second person

- collaboration graphs - undirected graphs where two people are connected if they collaborate in a specific way

Collaboration graphs

- The Hollywood graph models the collaboration of actors in films.
- We represent actors by vertices and we connect two vertices if the actors they represent have appeared in the same movie.
- Kevin Bacon numbers.
- An academic collaboration graph models the collaboration of researchers who have jointly written a paper in a particular subject.
- We represent researchers in a particular academic discipline using vertices.
- We connect the vertices representing two researchers in this discipline if they are coauthors of a paper.
- Erdős number.

Information graphs

- Graphs can be used to model different types of networks that link different types of information.
- In a web graph, web pages are represented by vertices and links are represented by directed edges.
- A web graph models the web at a particular time.
- In a citation network:
- Research papers in a particular discipline are represented by vertices.
- When a paper cites a second paper as a reference, there is an edge from the vertex representing this paper to the vertex representing the second paper.

Transportation graphs

- Graph models are extensively used in the study of transportation networks.
- Airline networks modeled using directed multigraphs:
- airports are represented by vertices
- each flight is represented by a directed edge from the vertex representing the departure airport to the vertex representing the destination airport
- Road networks can be modeled using graphs where
- vertices represent intersections and edges represent roads.
- undirected edges represent two-way roads and directed edges represent one-way roads.

Transportation graphs

- Graph models are extensively used in the study of transportation networks.

Graphs

- Biological networks:

Graph characteristics: Undirected graphs

Definition 1. Two vertices u, v in an undirected graph G are called adjacent (or neighbors) in G if there is an edge e between u and v. Such an edge e is called incident with the vertices u and v and e is said to connect u and v.

Definition 2. The set of all neighbors of a vertex v of $G=(V, E)$, denoted by $N(v)$, is called the neighborhood of \boldsymbol{v}. If A is a subset of V, we denote by $N(A)$ the set of all vertices in G that are adjacent to at least one vertex in A. So,

Definition 3. The degree of a vertex in a undirected graph is the number of edges incident with it, except that a loop at a vertex contributes two to the degree of that vertex. The degree of the vertex v is denoted by $\operatorname{deg}(v)$.

Undirected graphs

Example: What are the degrees and neighborhoods of the vertices in the graphs G ?

Solution:

G: $\quad \operatorname{deg}(a)=2, \operatorname{deg}(b)=\operatorname{deg}(c)=\operatorname{deg}(f)=4, \operatorname{deg}(d)=1$,
$\operatorname{deg}(e)=3, \operatorname{deg}(g)=0$.
$N(a)=\{b, f\}, N(b)=\{a, c, e, f\}, N(c)=\{b, d, e, f\}$,
$N(d)=\{c\}, N(e)=\{b, c, f\}, N(f)=\{a, b, c, e\}, N(g)=\varnothing$.

Undirected graphs

Example: What are the degrees and neighborhoods of the vertices in the graphs H ?

Solution:

$H: \quad \operatorname{deg}(a)=4, \operatorname{deg}(b)=\operatorname{deg}(e)=6, \operatorname{deg}(c)=1, \operatorname{deg}(d)=5$.
$N(a)=\{b, d, e\}, N(b)=\{a, b, c, d, e\}, N(c)=\{b\}$,
$N(d)=\{a, b, e\}, N(e)=\{a, b, d\}$.

Undirected graphs

Theorem 1 (Handshaking Theorem): If $G=(V, E)$ is an undirected graph with m edges, then

$$
2 m=\sum_{v \in V} \operatorname{deg}(v)
$$

Proof:

Each edge contributes twice to the degree count of all vertices. Hence, both the left-hand and right-hand sides of this equation equal twice the number of edges.

Think about the graph where vertices represent the people at a party and an edge connects two people who have shaken hands.

Undirected graphs

Theorem 2: An undirected graph has an even number of vertices of odd degree.
Proof: Let V_{1} be the vertices of even degree and V_{2} be the vertices of odd degree in an undirected graph $G=(V, E)$ with m edges.
Then

$$
2 m=\sum_{v \in V} \operatorname{deg}(v)=\sum_{v \in V_{1}} \operatorname{deg}(v)+\sum_{v \in V_{2}} \operatorname{deg}(v) .
$$

must be even since $\operatorname{deg}(v)$ is even for each $v \in V_{1}$

This sum must be even because $2 m$ is even and the sum of the degrees of the vertices of even degrees is also even. Because this is the sum of the degrees of all vertices of odd degree in the graph, there must be an even number of such vertices.

Directed graphs

Definition: An directed graph $G=(V, E)$ consists of V, a nonempty set of vertices (or nodes), and E, a set of directed edges or arcs. Each edge is an ordered pair of vertices. The directed edge (u, v) is said to start at u and end at v.

Definition: Let (u, v) be an edge in G. Then u is the initial vertex of this edge and is adjacent to v and v is the terminal (or end) vertex of this edge and is adjacent from u. The initial and terminal vertices of a loop are the same.

Directed graphs

Definition: The in-degree of a vertex v, denoted $\operatorname{deg}^{-}(v)$, is the number of edges which terminate at v. The out-degree of v, denoted $\operatorname{deg}^{+}(v)$, is the number of edges with v as their initial vertex. Note that a loop at a vertex contributes 1 to both the indegree and the out-degree of the vertex.

Example: Assume graph G :

What are in-degrees of vertices: ?
$\operatorname{deg}^{-}(a)=2, \operatorname{deg}^{-}(b)=2, \operatorname{deg}^{-}(c)=3$, $\operatorname{deg}^{-}(d)=2, \operatorname{deg}^{-}(e)=3, \operatorname{deg}^{-}(f)=0$.

Graphs: basics

Definition: The in-degree of a vertex v, denoted $\operatorname{deg}^{-}(v)$, is the number of edges which terminate at v. The out-degree of v, denoted $\mathrm{deg}^{+}(v)$, is the number of edges with v as their initial vertex. Note that a loop at a vertex contributes 1 to both the indegree and the out-degree of the vertex.

Example: Assume graph G :

G

What are out-degrees of vertices: ?
$\operatorname{deg}^{+}(a)=4, \operatorname{deg}^{+}(b)=1, \operatorname{deg}^{+}(c)=2$, $\operatorname{deg}^{+}(d)=2, \operatorname{deg}^{+}(e)=3, \operatorname{deg}^{+}(f)=0$.

Directed graphs

Theorem: Let $G=(V, E)$ be a graph with directed edges. Then:

$$
|E|=\sum_{v \in V} d e g^{-}(v)=\sum_{v \in V} d e g^{+}(v)
$$

Proof:

The first sum counts the number of outgoing edges over all vertices and the second sum counts the number of incoming edges over all vertices. It follows that both sums equal the number of edges in the graph.

Complete graphs

A complete graph on n vertices, denoted by K_{n}, is the simple graph that contains exactly one edge between each pair of distinct vertices.
$\stackrel{\bullet}{K_{1}}$
K_{1}

K_{3}

K_{4}

A cycle

A cycle C_{n} for $n \geq 3$ consists of n vertices $v_{1}, v_{2}, \cdots, v_{\mathrm{n}}$, and edges $\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}, \cdots,\left\{v_{n-1}, v_{n}\right\},\left\{v_{n}, v_{1}\right\}$.

N-dimensional hypercube

An n-dimensional hypercube, or n-cube, $\boldsymbol{Q}_{\boldsymbol{n}}$, is a graph with 2^{n} vertices representing all bit strings of length n, where there is an edge between two vertices that differ in exactly one bit position.

Q_{1}

Q_{2}

Q_{3}

Bipartite graphs

Definition: A simple graph G is bipartite if V can be partitioned into two disjoint subsets V_{1} and V_{2} such that every edge connects a vertex in V_{1} and a vertex in V_{2}. In other words, there are no edges which connect two vertices in V_{1} or in V_{2}.

Note: An equivalent definition of a bipartite graph is a graph where it is possible to color the vertices red or blue so that no two adjacent vertices are the same color.

Bipartite graphs

Definition: A simple graph G is bipartite if V can be partitioned into two disjoint subsets V_{1} and V_{2} such that every edge connects a vertex in V_{1} and a vertex in V_{2}. In other words, there are no edges which connect two vertices in V_{1} or in V_{2}.

Note: An equivalent definition of a bipartite graph is a graph where it is possible to color the vertices red or blue so that no two adjacent vertices are the same color.

CS 441 Discrete mathematics for CS

Bipartite graphs

Example: Show that C_{6} is bipartite.

Solution:

Bipartite graphs

Example: Show that C_{6} is bipartite.

Solution:

- We can partition the vertex set into $V_{1}=\left\{v_{1}, v_{3}, v_{5}\right\}$ and $V_{2}=$ $\left\{v_{2}, v_{4}, v_{6}\right\}$ so that every edge of C_{6} connects a vertex in V_{1} and V_{2}.

Bipartite graphs

Example: Show that C_{3} is not bipartite.

Solution:

Bipartite graphs

Example: Show that C_{3} is not bipartite.

Solution:

If we divide the vertex set of C_{3} into two nonempty sets, one of the two must contain two vertices. But in C_{3} every vertex is connected to every other vertex. Therefore, the two vertices in the same partition are connected. Hence, C_{3} is not bipartite.

Bipartite graphs and matching

Bipartite graphs are used to model applications that involve matching the elements of one set to elements in another, for example:

Example: Job assignments - vertices represent the jobs and the employees, edges link employees with those jobs they have been trained to do. A common goal is to match jobs to employees so that the most jobs are done.

(a)

Complete bipartite graphs

Definition: A complete bipartite graph $K_{m, n}$ is a graph that has its vertex set partitioned into two subsets V_{1} of size m and V_{2} of size n such that there is an edge from every vertex in V_{1} to every vertex in V_{2}.

Example: We display four complete bipartite graphs here.

Subgraphs

Definition: A subgraph of a graph $G=(V, E)$ is a graph (W, F), where $W \subset V$ and $F \subset E$. A subgraph H of G is a proper subgraph of G if $H \neq G$.

Example: K_{5} and one of its subgraphs.

Subgraphs

Definition: Let $G=(V, E)$ be a simple graph. The subgraph induced by a subset W of the vertex set V is the graph (W, F), where the edge set F contains an edge in E if and only if both endpoints are in W.

Example: K_{5} and the subgraph induced by $W=\{a, b, c, e\}$.

Union of the graphs

Definition: The union of two simple graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and G_{2} $=\left(V_{2}, E_{2}\right)$ is the simple graph with vertex set $V_{1} \cup V_{2}$ and edge set $E_{1} \cup E_{2}$. The union of G_{1} and G_{2} is denoted by $G_{1} \cup G_{2}$.

Example:

(a)

(b)

