Integers and division

Symmetric matrix

Definition:

- A square matrix \(A \) is called symmetric if \(A = A^T \).
- Thus \(A = [a_{ij}] \) is symmetric if \(a_{ij} = a_{ji} \) for \(i \) and \(j \) with \(1 \leq i \leq n \) and \(1 \leq j \leq n \).

Example:

\[
\begin{pmatrix}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}
\]

- Is it a symmetric matrix? yes
Zero-one matrix

Definition:

• A matrix with entries that are either 0 or 1 is called a zero-one matrix.

• Algorithms operating on discrete structures represented by zero-one matrices are based on Boolean arithmetic defined by the Boolean operations **and** and **or**:

\[
b_1 \land b_2 = \begin{cases}
1 & \text{if } b_1 = b_2 = 1 \\
0 & \text{otherwise}
\end{cases} \quad \text{and} \\
b_1 \lor b_2 = \begin{cases}
1 & \text{if } b_1 = 1 \text{ or } b_2 = 1 \\
0 & \text{otherwise}
\end{cases} \quad \text{or}
\]

Join and meet of matrices

Definition: Let A and B be two matrices:

\[
A = \begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix}, \quad B = \begin{bmatrix}
0 & 1 & 0 \\
1 & 1 & 0
\end{bmatrix}.
\]

• The join of A and B is:

\[
A \lor B = \begin{bmatrix}
1 \lor 0 & 0 \lor 1 & 1 \lor 0 \\
0 \lor 1 & 1 \lor 1 & 0 \lor 0
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 0
\end{bmatrix}.
\]

• The meet of A and B is

\[
A \land B = \begin{bmatrix}
1 \land 0 & 0 \land 1 & 1 \land 0 \\
0 \land 1 & 1 \land 1 & 0 \land 0
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}.
\]
Integers and division

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

• **Number theory** is a branch of mathematics that explores integers and their properties.

• **Integers:**
 – \mathbb{Z} integers \{…, -2, -1, 0, 1, 2, …\}
 – \mathbb{Z}^+ positive integers \{1, 2, …\}

• Number theory has many applications within computer science, including:
 – Indexing - Storage and organization of data
 – Encryption
 – Error correcting codes
 – Random numbers generators
Division

Definition: Assume 2 integers a and b, such that a $\neq 0$ (a is not equal 0). We say that a divides b if there is an integer c such that $b = ac$. If a divides b we say that a is a factor of b and that b is multiple of a.

- The fact that a divides b is denoted as $a \mid b$.

Examples:
- $4 \mid 24$ True or False? **True**
 - 4 is a factor of 24
 - 24 is a multiple of 4
- $3 \mid 7$ True or False? **False**

Divisibility

All integers divisible by $d > 0$ can be enumerated as:

- ..., $-kd$, ..., $-2d$, $-d$, 0, d, $2d$, ..., kd, ...

- **Question:** Let n and d be two positive integers. How many positive integers not exceeding n are divisible by d?
 - $0 < kd \leq n$
- **Answer:**
 Count the number of integers kd that are less than n. What is the number of integers k such that $0 < kd \leq n$?

$0 < kd \leq n \Rightarrow 0 < k \leq n/d$. Therefore, there are $\lfloor n/d \rfloor$ positive integers not exceeding n that are divisible by d.
Divisibility

Properties:
• Let a, b, c be integers. Then the following hold:
 1. if a | b and a | c then a | (b + c)
 2. if a | b then a | bc for all integers c
 3. if a | b and b | c then a | c

Proof of 1: if a | b and a | c then a | (b + c)
• from the definition of divisibility we get:
 • b = au and c = av where u, v are two integers. Then
 • (b + c) = au + av = a(u + v)
 • Thus a divides b + c.

Proof of 2: if a | b then a | bc for all integers c
• If a | b, then there is some integer u such that b = au.
• Multiplying both sides by c gives us bc = auc, so by definition, a | bc.
• Thus a divides bc.
Primes

Definition: A positive integer \(p \) that is greater than 1 and that is divisible only by 1 and by itself \((p)\) is called a prime.

Examples: 2, 3, 5, 7, …

1 | 2 and 2 | 2, 1 | 3 and 3 | 3, etc

What is the next prime after 7?

- 11
- Next?
 - 13
Primes

Definition: A positive integer that is greater than 1 and is not a prime is called a **composite**.

Examples: 4, 6, 8, 9, …

Why?

2 | 4

Why 6 is a composite?

2 | 6 or 3 | 6

2 | 8 or 4 | 8

3 | 9
The Fundamental theorem of Arithmetic

Fundamental theorem of Arithmetic:

- Any positive integer greater than 1 can be expressed as a product of prime numbers.

Examples:

- $12 = 2 \times 2 \times 3$
- $21 = 3 \times 7$

- Process of finding out factors of the product: **factorization.**
Primes and composites

Factorization of composites to primes:

- \(100 = 2 \times 2 \times 5 \times 5 = 2^2 \times 5^2\)
- \(99 = 3 \times 3 \times 11 = 3^2 \times 11\)

Important question:
- How to determine whether the number is a prime or a composite?

Primes and composites

- How to determine whether the number is a prime or a composite?

Simple approach (1):
- Let \(n\) be a number. To determine whether it is a prime we can test if any number \(x < n\) divides it. If yes it is a composite. If we test all numbers \(x < n\) and do not find the proper divisor then \(n\) is a prime.
Primes and composites

• How to determine whether the number is a prime or a composite?

Simple approach (1):

• Let \(n \) be a number. To determine whether it is a prime we can test if any number \(x < n \) divides it. If yes it is a composite. If we test all numbers \(x < n \) and do not find the proper divisor then \(n \) is a prime.

• Example:
 • Assume we want to check if 17 is a prime?
 • The approach would require us to check:
 • 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

• Example approach 1:
 • Assume we want to check if 17 is a prime?
 • The approach would require us to check:
 • 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

• Is this the best we can do?
 • No. The problem here is that we try to test all the numbers. But this is not necessary.
 • Idea: Every composite factorizes to a product of primes. So it is sufficient to test only the primes \(x < n \) to determine the primality of \(n \).
Primes and composites

• How to determine whether the number is a prime or a composite?

Approach 2:

• Let n be a number. To determine whether it is a prime we can test if any prime number $x < n$ divides it. If yes it is a composite. If we test all primes $x < n$ and do not find a proper divisor then n is a prime.

• Example: Is 31 a prime?
 • Check if 2, 3, 5, 7, 11, 13, 17, 23, 29 divide it
 • It is a prime !!
Primes and composites

Example approach 2:
Is 91 a prime number?
- Easy primes 2, 3, 5, 7, 11, 13, 17, 19 ..
- But how many primes are there that are smaller than 91?

Caveat:
- If \(n \) is relatively small the test is good because we can enumerate (memorize) all small primes
- But if \(n \) is large there can be larger not obvious primes

Primes and composites

Theorem: If \(n \) is a composite then \(n \) has a prime divisor less than or equal to \(\sqrt{n} \).
Primes and composites

Theorem: If \(n \) is a composite then \(n \) has a prime divisor less than or equal to \(\sqrt{n} \).

Proof:

- If \(n \) is composite, then it has a positive integer factor \(a \) such that \(1 < a < n \) by definition. This means that \(n = ab \), where \(b \) is an integer greater than 1.
- Assume \(a > \sqrt{n} \) and \(b > \sqrt{n} \). Then \(ab > \sqrt{n} \sqrt{n} = n \), which is a contradiction. So either \(a \leq \sqrt{n} \) or \(b \leq \sqrt{n} \).
- Thus, \(n \) has a divisor less than \(\sqrt{n} \).
- By the fundamental theorem of arithmetic, this divisor is either prime, or is a product of primes. In either case, \(n \) has a prime divisor less than \(\sqrt{n} \).

Primes and composites

Theorem: If \(n \) is a composite then \(n \) has a prime divisor less than or equal to \(\sqrt{n} \).

Approach 3:

- Let \(n \) be a number. To determine whether it is a prime we can test if any prime number \(x < \sqrt{n} \) divides it.

Example 1: Is 101 a prime?
- Primes smaller than \(\sqrt{101} = 10.xxx \) are: 2,3,5,7
- 101 is not divisible by any of them
- Thus 101 is a prime

Example 2: Is 91 a prime?
- Primes smaller than \(\sqrt{91} \) are: 2,3,5,7
- 91 is divisible by 7
- Thus 91 is a composite
Primes

Question: How many primes are there?

Theorem: There are infinitely many primes.

Proof by Euclid.

- Proof by contradiction:
 - Assume there is a finite number of primes: \(p_1, p_2, \ldots, p_n \)
 - Let \(Q = p_1p_2\ldots p_n + 1 \) be a number.
 - None of the numbers \(p_1, p_2, \ldots, p_n \) divides the number \(Q \).
 - This is a contradiction since we assumed that we have listed all primes.
Division

Let a be an integer and d a positive integer. Then there are unique integers, q and r, with 0 \(\leq r < d \), such that

\[a = dq + r. \]

Definitions:
- a is called the **dividend**,
- d is called the **divisor**,
- q is called the **quotient** and
- r the **remainder** of the division.

Example:
- a = 14, d = 3
 \[14 = 3 \times 4 + 2 \]
 \[14 / 3 = 4.666 \]
 \[14 \text{ div } 3 = 4 \]
 \[14 \mod 3 = 2 \]

Relations:
- \(q = a \div d \), \quad r = a \mod d

Greatest common divisor

Definition: Let a and b are integers, not both 0. Then the largest integer \(d \) such that \(d \mid a \) and \(d \mid b \) is called the **greatest common divisor** of a and b. The greatest common divisor is denoted as gcd(a,b).

Examples:
- gcd(24,36) = ?
- Check 2,3,4,6,12 \quad gcd(24,36) = 12
- gcd(11,23) = ?