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Course administration

Homework assignment 4:
* isoutand due on Feb 11, 2013

Midterm 1:

» February 13, 2013

» Covers chapter 1 and 2.1-2.3 of the textbook
» Closed book

» Tables for equivalences and rules of inference will be
given to you

Course web page:
http://www.cs.pitt.edu/~milos/courses/cs441/
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Set

» Definition: A set is a (unordered) collection of objects. These
objects are sometimes called elements or members of the set.
(Cantor's naive definition)

» Examples:
— Vowels in the English alphabet
V={aeliou}
— First seven prime numbers.
X={2357,11,13,17}
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Sets - review

* A subset of B:

— Ais a subset of B if all elements in A are also in B.
* Proper subset:

— Alis a proper subset of B, if Aisasubset of Band A= B
* A power set:

— The power set of A is a set of all subsets of A
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Sets - review

» Cardinality of a set A:

— The number of elements of in the set
* Ann-tuple

— An ordered collection of n elements
» Cartesian product of A and B

— A set of all pairs such that the first element is in A and
the second in B
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Set operations

Definition: Let A and B be sets. The union of A and B, denoted
by AU B, is the set that contains those elements that are either in
A or in B, or in both.

Alternate: AUB={x|xeAv xe B}

U B

5o
Example:

A={1236} B={2460}
AUB={123469}
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Set operations

Definition: Let A and B be sets. The intersection of A and B,
denoted by A B, is the set that contains those elements that are
in both A and B.

o Alternate: AnB={x|xe AA xXeB}

U B

Ob9)
Example:

« A={1236} B={246, 9}
« AnB={2,6}
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Disjoint sets
Definition: Two sets are called disjoint if their intersection is
empty.
» Alternate: A and B are disjoint if and only if AnB = .

U B

Example:

« A={1,2,3,6} B={4,7,8} Are these disjoint?
* Yes.

e AnB=U
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Set difference

Definition: Let A and B be sets. The difference of A and B,
denoted by A - B, is the set containing those elements that are in
A but not in B. The difference of A and B is also called the
complement of B with respect to A.

o Alternate: A-B={x|xeA A xgB}

U B
A

Example: A={1,2,3,5,7} B={15,6,8}
« A-B={2,3,7}

CS 441 Discrete mathematics for CS M. Hauskrecht

Complement of a set

Definition: Let U be the universal set: the set of all objects under
the consideration.

Definition: The complement of the set A, denoted by A, is the
complement of A with respect to U.

o Alternate: A={x|x ¢ A}

Example: U={1,2,3,4,5,6,7,8} A ={1,3,5,7}
e A=7?
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Complement of a set

Definition: Let U be the universal set: the set of all objects under
the consideration.

Definition: The complement of the set A, denoted by A, is the
complement of A with respect to U.

 Alternate: A={x|x ¢ A}

Example: U={1,2,3,4,5,6,7,8} A ={1,3,5,7}
« A={2,4,6,8}
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Set identities

Set Identities (analogous to logical equivalences)
* ldentity
-AVI=A
-AnU=A
» Domination
-AvYU=U
-ANg =0
* ldempotent
- AUA=A
-ANA=A
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Set identities

Double complement

~A=A

Commutative

- AUuB=BUA

- AnB=BnA
Associative

- Au(Buc) = (A uB) uC

- An(BNC)=(AnB)nC
Distributive
-AuBC)=(AuB)n(AuU C)
- An(BuC)= (AMB) U(ANC)
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Set identities

* DeMorgan
- (AnB) = Au B
- (AU B) = An~B

» Absorbtion Laws
-Au (AnB)=A
- An(A UB)=A

» Complement Laws
~AUA=U
~AnNA=Q
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Set identities

Set identities can be proved using membership tables.
List each combination of sets that an element can belong to.

Then show that for each such a combination the element either

belongs or does not belong to both sets in the identity.

« Prove: (AnB)= A UB

A B A B |AnB |AUB
1 1 0 0 0 0
1 0 0 1 0 0
0 1 1 0 0 0
0 0 1 1 1 1
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Generalized unions and itersections

Definition: The union of a collection of sets is the set that

contains those elements that are members of at least one set

in the collection.

LnJAi ={AUAU..UA}

Example:
o LetA={1.2,..i} i=12,..n
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Generalized unions and intersections

Definition: The intersection of a collection of sets is the set that
contains those elements that are members of all sets in the
collection.

ﬁAi:{AimAzm...mAn}

Example:
o LetA;={12,.,i} i=12,..,n

ﬁ Ai:{l}

i=1
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Computer representation of sets

» Representing sets as unordered collection of elements (using
data structures like lists) not very efficient

Better idea:

» Assign a bit in a bit string to each element in the universal set
and set the bit to 1 if the element is present otherwise use 0

Example:
All possible elements: U={1 2 3 4 5}
o Assume A={2,5}
— Computer representation: A = 01001
o Assume B={1,5}
— Computer representation: B = 10001
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Computer representation of sets

Example:
« A=01001
B = 10001

» The union is modeled with a bitwise or

« AvB=11001

» The intersection is modeled with a bitwise and

« A AB=00001

* The complement is modeled with a bitwise negation
A =10110
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Functions

» Definition: Let A and B be two sets. A function from A to B,
denoted f: A — B, is an assignment of exactly one element of
B to each element of A. We write f(a) = b to denote the
assignment of b to an element a of A by the function f.

A f:A->B B
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Functions

» Definition: Let A and B be two sets. A function from A to B,
denoted f: A — B, is an assignment of exactly one element of
B to each element of A. We write f(a) = b to denote the
assignment of b to an element a of A by the function f.

A f:A—>B B

Not allowed !!!
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Representing functions

Representations of functions:

1. Explicitly state the assignments in between elements of the
two sets

2. Compactly by a formula. (using ‘standard’ functions)

Examplel:
e LetA={1,23}and B ={a,b,c}
e Assume fis defined as:
el>c
*2—>a
*3->¢C
e Isfafunction?

* Yes. since f(1)=c, f(2)=a, f(3)=c. each element of A is assigned
an element from B
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Representing functions

Representations of functions:

1. Explicitly state the assignments in between elements of the
two sets

2. Compactly by a formula. (using ‘standard’ functions)
Example 2:
e LetA={1,23}and B ={a,b,c}
» Assume g is defined as
*l—>c
*1-5b
*2—a
*3->¢cC
* Is gafunction?
* No. g(1) = is assigned both c and b.
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Representing functions

Representations of functions:

1. Explicitly state the assignments in between elements of the
two sets

2. Compactly by a formula. (using ‘standard’ functions)
Example 3:
« A={01,2,34/5,6,7,89}, B={0,12}
» Defineh: A —> Bas:
* h(x) =x mod 3.
* (the result is the remainder after the division by 3)
» Assignments:
e 027
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Representing functions

Representations of functions:

1. Explicitly state the assignments in between elements of the
two sets

2. Compactly by a formula. (using ‘standard’ functions)
Example 3:
+ A={01,2345,6,7,89} B={0,1,2}
* Defineh: A— Bas:
* h(x) =x mod 3.
* (the result is the remainder after the division by 3)
Assignments:

« 00 350
e 1> 1 4>1
« 232
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Important sets

Definitions: Let f be a function from A to B.

* We say that A is the domain of f and B is the codomain of f.

» Iff(a) = b, b is the image of a and a is a pre-image of b.

* The range of f is the set of all images of elements of A. Also, if
fis a function from A to B, we say f maps A to B.

Example: Let A={1,2,3}and B ={a,b,c}

* Assume fisdefinedas:1—>c,2—>33—>¢C

* What is the image of 1?

e 15c c is the image of 1
* What is the pre-image of a?
e 2>a 2 is a pre-image of a.

 Domainoff ? {1,2,3}
* Codomainoff? {ab,c}
* Rangeoff? {ac}
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Image of a subset

Definition: Let f be a function from set A to set B and let S be a
subset of A. The image of S is a subset of B that consists of the
images of the elements of S. We denote the image of S by f(S),
sothat f(S) ={f(s)|s € S }.

A fA>B B

Example:
e LetA={123}andB={abc}tandf:1—>c,2—>a3—>cC
e LetS={1,3} then image f(S) = {c}.
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Injective function

Definition: A function f is said to be one-to-one, or injective, if
and only if f(x) = f(y) implies x =y for all x, y in the domain of
f. A function is said to be an injection if it is one-to-one.

Alternate: A function is one-to-one if and only if f(x) = f(y),
whenever x =Y. This is the contrapositive of the definition.

A fA>B B A fA>B B
T T—e I
Not injective Injective function
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Injective functions

Example 1: Let A={1,2,3}and B ={a,b,c}
» Define fas

-1->5c

-2->a

-3->¢C

» Isfonetoone? No, it is not one-to-one since f(1) = f(3) = ¢, and
1=+3.

Example 2: Letg: Z — Z, where g(x) = 2x - 1.

* Is g is one-to-one (why?)

* Yes.

» Suppose g(a) =g(b),i.e.,2a-1=2b-1=>2a=2b
h =>a=h.
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