CS 441 Discrete Mathematics for CS Lecture 8

Sets and set operations: cont. Functions.

Milos Hauskrecht

milos@cs.pitt.edu
5329 Sennott Square

CS 441 Discrete mathematics for CS

M. Hauskrecht

Course administration

Homework assignment 4:

• is out and due on Feb 11, 2013

Midterm 1:

- February 13, 2013
- Covers chapter 1 and 2.1-2.3 of the textbook
- Closed book
- Tables for equivalences and rules of inference will be given to you

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs441/

CS 441 Discrete mathematics for CS

Set

- <u>Definition</u>: A set is a (unordered) collection of objects. These objects are sometimes called **elements** or **members** of the set. (Cantor's naive definition)
- Examples:
 - Vowels in the English alphabet

$$V = \{ a, e, i, o, u \}$$

- First seven prime numbers.

$$X = \{ 2, 3, 5, 7, 11, 13, 17 \}$$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Sets - review

- A subset of B:
 - A is a subset of B if all elements in A are also in B.
- Proper subset:
 - A is a proper subset of B, if A is a subset of B and $A \neq B$
- A power set:
 - The power set of A is a set of all subsets of A

CS 441 Discrete mathematics for CS

Sets - review

- Cardinality of a set A:
 - The number of elements of in the set
- An n-tuple
 - An ordered collection of n elements
- · Cartesian product of A and B
 - A set of all pairs such that the first element is in A and the second in B

CS 441 Discrete mathematics for CS

M. Hauskrecht

Set operations

<u>Definition</u>: Let A and B be sets. The **union of A and B**, denoted by $A \cup B$, is the set that contains those elements that are either in A or in B, or in both.

• Alternate: $A \cup B = \{ x \mid x \in A \lor x \in B \}.$

- Example:
- $A = \{1,2,3,6\}$ $B = \{2,4,6,9\}$
- $A \cup B = \{ 1,2,3,4,6,9 \}$

CS 441 Discrete mathematics for CS

Set operations

<u>Definition</u>: Let A and B be sets. The <u>intersection of A and B</u>, denoted by $A \cap B$, is the set that contains those elements that are in both A and B.

• Alternate: $A \cap B = \{ x \mid x \in A \land x \in B \}.$

Example:

- $A = \{1,2,3,6\}$ $B = \{2,4,6,9\}$
- $A \cap B = \{ 2, 6 \}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Disjoint sets

<u>Definition</u>: Two sets are called **disjoint** if their intersection is empty.

• Alternate: A and B are disjoint if and only if $A \cap B = \emptyset$.

Example:

- $A=\{1,2,3,6\}$ $B=\{4,7,8\}$ Are these disjoint?
- Yes.
- $A \cap B = \emptyset$

CS 441 Discrete mathematics for CS

Set difference

Definition: Let A and B be sets. The difference of A and B, denoted by A - B, is the set containing those elements that are in A but not in B. The difference of A and B is also called the complement of B with respect to A.

• Alternate: $A - B = \{ x \mid x \in A \land x \notin B \}.$

Example: $A = \{1,2,3,5,7\}$ $B = \{1,5,6,8\}$

• A - B = $\{2,3,7\}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Complement of a set

<u>Definition</u>: Let U be the <u>universal set</u>: the set of all objects under the consideration.

<u>Definition:</u> The complement of the set A, denoted by A, is the complement of A with respect to U.

• Alternate: $\overline{A} = \{ x \mid x \notin A \}$

Example: $U = \{1,2,3,4,5,6,7,8\}$ A = $\{1,3,5,7\}$

• $\overline{A} = ?$

CS 441 Discrete mathematics for CS

Complement of a set

<u>Definition</u>: Let U be the <u>universal set</u>: the set of all objects under the consideration.

<u>Definition:</u> The complement of the set A, denoted by A, is the complement of A with respect to U.

• Alternate: $\overline{A} = \{ x \mid x \notin A \}$

Example: $U=\{1,2,3,4,5,6,7,8\}$ A = $\{1,3,5,7\}$

• $\overline{A} = \{2,4,6,8\}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Set identities

Set Identities (analogous to logical equivalences)

- Identity
 - $-A \cup \emptyset = A$
 - $-A\cap U=A$
- Domination
 - $-A \cup U = U$
 - $-A\cap\varnothing=\varnothing$
- Idempotent
 - $-A \cup A = A$
 - $-A \cap A = A$

CS 441 Discrete mathematics for CS

Set identities

- Double complement
 - $-\overline{\overline{A}} = A$
- Commutative
 - $-A \cup B = B \cup A$
 - $-A \cap B = B \cap A$
- Associative
 - $-A \cup (B \cup C) = (A \cup B) \cup C$
 - $-A \cap (B \cap C) = (A \cap B) \cap C$
- Distributive
 - $-A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - $-A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Set identities

- DeMorgan
 - $-(A \cap B) =$
 - $-\overline{(A \cup B)} =$
- $\overline{A} \cap \overline{B}$
- Absorbtion Laws
 - $-A \cup (A \cap B) = A$
 - $-A \cap (A \cup B) = A$
- Complement Laws
 - $-A \cup \overline{\overline{A}} = U$
 - $-\ A\ \cap \overline{A}=\ \varnothing$

CS 441 Discrete mathematics for CS

Set identities

• Set identities can be proved using membership tables.

• List each combination of sets that an element can belong to. Then show that for each such a combination the element either belongs or does not belong to both sets in the identity.

• Prove: $(\overline{A \cap B}) = \overline{A} \cup \overline{B}$

А	В	Ā	_ B	$\overline{A \cap B}$	 A∪B
1	1	0	0	0	0
1	0	0	1	0	0
0	1	1	0	0	0
0	0	1	1	1	1

CS 441 Discrete mathematics for CS

M. Hauskrecht

Generalized unions and itersections

<u>Definition</u>: The <u>union of a collection of sets</u> is the set that contains those elements that are members of at least one set in the collection.

$$\bigcup_{i=1}^n A_i = \{A_1 \cup A_2 \cup \ldots \cup A_n\}$$

Example:

• Let $A_i = \{1,2,...,i\}$ i =1,2,...,n

 $\bigcup_{i=1}^{n} A_{i} = \{1, 2, ..., n\}$

CS 441 Discrete mathematics for CS

Generalized unions and intersections

<u>Definition</u>: The <u>intersection of a collection of sets</u> is the set that contains those elements that are members of all sets in the collection.

$$\bigcap_{i=1}^n A_i = \{A_1 \cap A_2 \cap ... \cap A_n\}$$

Example:

• Let $A_i = \{1,2,...,i\}$ i = 1,2,...,n

$$\bigcap_{i=1}^{n} A_{i} = \{ 1 \}$$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Computer representation of sets

• Representing sets as unordered collection of elements (using data structures like lists) not very efficient

Better idea:

• Assign a bit in a bit string to each element in the universal set and set the bit to 1 if the element is present otherwise use 0

Example:

All possible elements: $U=\{1\ 2\ 3\ 4\ 5\}$

- Assume A={2,5}
 - Computer representation: A = 01001
- Assume B={1,5}
 - Computer representation: B = 10001

CS 441 Discrete mathematics for CS

Computer representation of sets

Example:

- A = 01001
- B = 10001
- The **union** is modeled with a bitwise **or**
- $A \lor B = 11001$
- The intersection is modeled with a bitwise and
- $A \wedge B = 00001$
- The **complement** is modeled with a bitwise **negation**
- $\overline{A} = 10110$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Functions

CS 441 Discrete mathematics for CS

Functions

Definition: Let A and B be two sets. A function from A to B, denoted f: A → B, is an assignment of exactly one element of B to each element of A. We write f(a) = b to denote the assignment of b to an element a of A by the function f.

M. Hauskrecht

Functions

• <u>Definition</u>: Let A and B be two sets. A <u>function from A to B</u>, denoted **f**: A → B, is an assignment of exactly one element of B to each element of A. We write f(a) = b to denote the assignment of b to an element a of A by the function f.

Representing functions

Representations of functions:

- 1. Explicitly state the assignments in between elements of the two sets
- 2. Compactly by a formula. (using 'standard' functions)

Example1:

- Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$
- Assume f is defined as:
 - $1 \rightarrow c$
 - $2 \rightarrow a$
 - $3 \rightarrow c$
- Is f a function?
- Yes. since f(1)=c, f(2)=a, f(3)=c. each element of A is assigned an element from B

M. Hauskrecht

Representing functions

Representations of functions:

- 1. Explicitly state the assignments in between elements of the two sets
- 2. Compactly by a formula. (using 'standard' functions)

Example 2:

- Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$
- Assume g is defined as
 - $1 \rightarrow c$
 - $1 \rightarrow b$
 - $2 \rightarrow a$
 - $3 \rightarrow c$
- Is g a function?
- No. g(1) = is assigned both c and b.

Representing functions

Representations of functions:

- 1. Explicitly state the assignments in between elements of the two sets
- 2. Compactly by a formula. (using 'standard' functions)

Example 3:

- $A = \{0,1,2,3,4,5,6,7,8,9\}, B = \{0,1,2\}$
- Define h: $A \rightarrow B$ as:
 - $h(x) = x \mod 3$.
 - (the result is the remainder after the division by 3)
- Assignments:
- $0 \rightarrow ?$

M. Hauskrecht

Representing functions

Representations of functions:

- 1. Explicitly state the assignments in between elements of the
- 2. Compactly by a formula. (using 'standard' functions)

Example 3:

- $A = \{0,1,2,3,4,5,6,7,8,9\}, B = \{0,1,2\}$
- Define h: $A \rightarrow B$ as:
 - $h(x) = x \mod 3$.
 - (the result is the remainder after the division by 3)
- Assignments:
- $0 \rightarrow 0$

 $3 \rightarrow 0$

1 → 1

 $4 \rightarrow 1$

• $2 \rightarrow 2$

...

Important sets

Definitions: Let f be a function from A to B.

- We say that A is the **domain** of f and B is the **codomain** of f.
- If f(a) = b, b is the image of a and a is a pre-image of b.
- The range of f is the set of all images of elements of A. Also, if f is a function from A to B, we say f maps A to B.

Example: Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$

- Assume f is defined as: $1 \rightarrow c$, $2 \rightarrow a$, $3 \rightarrow c$
- What is the image of 1?
- $1 \rightarrow c$ c is the image of 1
- What is the pre-image of a?
- $2 \rightarrow a$ 2 is <u>a</u> pre-image of a.
- Domain of f ? {1,2,3}
- Codomain of f? {a,b,c}
- Range of f? {a,c}

M. Hauskrecht

Image of a subset

<u>Definition</u>: Let f be a function from set A to set B and let S be a subset of A. The image of S is a subset of B that consists of the images of the elements of S. We denote the image of S by f(S), so that $f(S) = \{ f(s) \mid s \in S \}$.

Example:

- Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$ and $f: 1 \to c, 2 \to a, 3 \to c$
- Let $S = \{1,3\}$ then image $f(S) = \{c\}$.

Injective function

<u>Definition</u>: A function f is said to be **one-to-one**, **or injective**, if and only if f(x) = f(y) implies x = y for all x, y in the domain of f. A function is said to be an **injection if it is one-to-one**.

Alternate: A function is one-to-one if and only if $f(x) \neq f(y)$, whenever $x \neq y$. This is the contrapositive of the definition.

Not injective

Injective function

M. Hauskrecht

Injective functions

Example 1: Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$

- Define f as
 - $-1 \rightarrow c$
 - $-2 \rightarrow a$
 - $-3 \rightarrow c$
- Is f one to one? No, it is not one-to-one since f(1) = f(3) = c, and $1 \neq 3$.

Example 2: Let $g: Z \to Z$, where g(x) = 2x - 1.

- Is g is one-to-one (why?)
- Yes.
- Suppose g(a) = g(b), i.e., 2a 1 = 2b 1 => 2a = 2b

$$=> a = b.$$