### CS 441 Discrete Mathematics for CS Lecture 5

## **Predicate logic**

#### Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

#### **Announcements**

- Homework assignment 1 due today
- Homework assignment 2:
  - posted on the course web page
  - Due on Monday January 28, 2013
- Recitations today:
  - Practice problems related to assignment 2

## **Propositional logic: limitations**

**Propositional logic:** the world is described in terms of elementary propositions and their logical combinations

#### **Elementary statements:**

- Typically refer to objects, their properties and relations.
   But these are not explicitly represented in the propositional logic
  - Example:
    - "John is a UPitt student."



• Objects and properties are hidden in the statement, it is not possible to reason about them

## **Propositional logic: limitations**

(1) Statements that hold for many objects must be enumerated

- John is a CS UPitt graduate → John has passed cs441
- Ann is a CS Upitt graduate → Ann has passed cs441
- Ken is a CS Upitt graduate → Ken has passed cs441
- **—** ...
- Solution: make statements with variables
  - x is a CS UPitt graduate  $\rightarrow$  x has passed cs441

## **Propositional logic: limitations**

#### (2) Statements that define the property of the group of objects

- All new cars must be registered.
- Some of the CS graduates graduate with honor.
- Solution: make statements with quantifiers
  - Universal quantifier –the property is satisfied by all members of the group
  - Existential quantifier at least one member of the group satisfy the property

## **Predicate logic**

#### Remedies the limitations of the propositional logic

- Explicitly models objects and their properties
- Allows to make statements with variables and quantify them

#### **Predicate logic:**

- Constant —models a specific object Examples: "John", "France", "7"
- Variable represents object of specific type (defined by the universe of discourse)

Examples: x, y

(universe of discourse can be people, students, numbers)

- Predicate over one, two or many variables or constants.
  - Represents properties or relations among objects

**Examples:** Red(car23), student(x), married(John,Ann)

#### **Predicates**

**Predicates** represent properties or relations among objects

- A predicate P(x) assigns a value **true or false** to each x depending on whether the property holds or not for x.
- The assignment is best viewed as a big table with the variable x substituted for objects from *the universe of discourse*

- Assume Student(x) where the universe of discourse are people
- Student(John) .... T (if John is a student)
- Student(Ann) .... T (if Ann is a student)
- Student(Jane) ..... F (if Jane is not a student)
- •

#### **Predicates**

Assume a predicate P(x) that represents the statement:

x is a prime number

Truth values for different x:

• P(2)

T

• P(3)

T

• P(4)

F

• P(5)

T

• P(6)

F

All statements P(2), P(3), P(4), P(5), P(6) are propositions

• • •

But P(x) with variable x is not a proposition

## Compound statements in predicate logic

#### Compound statements are obtained via logical connectives

#### **Examples:**

 $Student(Ann) \wedge Student(Jane)$ 

- Translation: "Both Ann and Jane are students"
- **Proposition:** yes.

Country(Sienna) ∨ River(Sienna)

- Translation: "Sienna is a country or a river"
- **Proposition:** yes.

CS-major(x)  $\rightarrow$  Student(x)

- **Translation:** "if x is a CS-major then x is a student"
- **Proposition:** no.

## **Quantified statements**

Predicate logic lets us to make statements about groups of objects

To do this we use special quantified expressions

Two types of quantified statements:

universal

**Example:** 'all CS Upitt graduates have to pass cs441"

the statement is true for all graduates

existential

**Example:** 'Some CS Upitt students graduate with honor.'

the statement is true for some people

## Universal quantifier

Quantification converts a propositional function into a proposition by binding a variable to a set of values from the universe of discourse.

- Let P(x) denote x > x 1.
- Is P(x) a proposition? No. Many possible substitutions.
- Is  $\forall x P(x)$  a proposition? Yes. True if for all x from the universe of discourse P(x) is true.

## Universally quantified statements

#### Predicate logic lets us make statements about groups of objects

#### **Universally quantified statement**

- CS-major(x)  $\rightarrow$  Student(x)
  - **Translation:** "if x is a CS-major then x is a student"
  - Proposition: no.
- $\forall x \text{ CS-major}(x) \rightarrow \text{Student}(x)$ 
  - Translation: "(For all people it holds that) if a person is a
     CS-major then she is a student."
  - Proposition: yes.

## Existentially quantified statements

#### Statements about groups of objects

- CS-Upitt-graduate  $(x) \land Honor-student(x)$ 
  - Translation: "x is a CS-Upitt-graduate and x is an honor student"
  - Proposition: no.
- $\exists x \text{ CS-Upitt-graduate } (x) \land \text{Honor-student}(x)$ 
  - Translation: "There is a person who is a CS-Upitt-graduate and who is also an honor student."
  - Proposition: yes.

## **Summary of quantified statements**

• When  $\forall x P(x)$  and  $\exists x P(x)$  are true and false?

| Statement | When true?                              | When false?                        |
|-----------|-----------------------------------------|------------------------------------|
| ∀x P(x)   | P(x) true for all x                     | There is an x where P(x) is false. |
| ∃x P(x)   | There is some x for which P(x) is true. | P(x) is false for all x.           |

Suppose the elements in the universe of discourse can be enumerated as x1, x2, ..., xN then:

- $\forall x \ P(x)$  is true whenever  $P(x1) \land P(x2) \land ... \land P(xN)$  is true
- $\exists x \ P(x)$  is true whenever  $P(x1) \lor P(x2) \lor ... \lor P(xN)$  is true.

## Translation with quantifiers

#### **Sentence:**

- All Upitt students are smart.
- **Assume:** the domain of discourse of x are Upitt students
- Translation:
- $\forall x \, Smart(x)$
- **Assume:** the universe of discourse are students (all students):
- $\forall x \text{ at}(x, Upitt) \rightarrow Smart(x)$
- **Assume:** the universe of discourse are people:
- $\forall x \text{ student}(x) \land \text{at}(x, \text{Upitt}) \rightarrow \text{Smart}(x)$

## Translation with quantifiers

#### **Sentence:**

- Someone at CMU is smart.
- **Assume:** the domain of discourse are all CMU affiliates
- Translation:
- $\exists x Smart(x)$
- **Assume:** the universe of discourse are people:
- $\exists x \text{ at}(x,CMU) \land Smart(x)$

## Translation with quantifiers

• Assume two predicates S(x) and P(x)

#### Universal statements typically tie with implications

- All S(x) is P(x)
  - $\forall x (S(x) \rightarrow P(x))$
- No S(x) is P(x)
  - $\forall x (S(x) \rightarrow \neg P(x))$

#### **Existential statements typically tie with conjunctions**

- Some S(x) is P(x)
  - $\exists x (S(x) \land P(x))$
- Some S(x) is not P(x)
  - $-\exists x (S(x) \land \neg P(x))$

## **Nested quantifiers**

 More than one quantifier may be necessary to capture the meaning of a statement in the predicate logic.

- Every real number has its corresponding negative.
- Translation:
  - Assume:
    - a real number is denoted as x and its negative as y
    - A predicate P(x,y) denotes: "x + y = 0"
- Then we can write:

$$\forall x \exists y P(x,y)$$

## **Nested quantifiers**

 More than one quantifier may be necessary to capture the meaning of a statement in the predicate logic.

- There is a person who loves everybody.
- Translation:
  - Assume:
    - Variables x and y denote people
    - A predicate L(x,y) denotes: "x loves y"
- Then we can write in the predicate logic:

$$\exists x \forall y L(x,y)$$

## Order of quantifiers

## The order of nested quantifiers matters if quantifiers are of different type

•  $\forall x \exists y \ L(x,y)$  is not the same as  $\exists y \forall x \ L(x,y)$ 

#### **Example:**

- Assume L(x,y) denotes "x loves y"
- Then:  $\forall x \exists y L(x,y)$
- Translates to: Everybody loves somebody.
- And:  $\exists y \ \forall x \ L(x,y)$
- Translates to: There is someone who is loved by everyone.

The meaning of the two is different.

## Order of quantifiers

The order of nested quantifiers does not matter if quantifiers are of the same type

- For all x and y, if x is a parent of y then y is a child of x
- Assume:
  - Parent(x,y) denotes "x is a parent of y"
  - Child(x,y) denotes "x is a child of y"
- Two equivalent ways to represent the statement:
  - $\forall x \forall y Parent(x,y) \rightarrow Child(y,x)$
  - $\forall y \ \forall x \ Parent(x,y) \rightarrow Child(y,x)$

#### **Translation exercise**

#### **Suppose:**

- Variables x,y denote people
- L(x,y) denotes "x loves y".

#### **Translate:**

Everybody loves Raymond.

 $\forall x \ L(x,Raymond)$ 

Everybody loves somebody.

 $\forall x \exists y \ L(x,y)$ 

- There is somebody whom everybody loves.  $\exists y \forall x \ L(x,y)$
- There is somebody who Raymond doesn't love.

 $\exists y \neg L(Raymond, y)$ 

There is somebody whom no one loves.

$$\exists y \ \forall x \ \neg L(x,y)$$

## **Negation of quantifiers**

#### **English statement:**

- Nothing is perfect.
- Translation:  $\neg \exists x \text{ Perfect}(x)$

Another way to express the same meaning:

- Everything is imperfect.
- Translation:  $\forall x \neg Perfect(x)$

**Conclusion:**  $\neg \exists x \ P(x)$  is equivalent to  $\forall x \neg P(x)$ 

## **Negation of quantifiers**

#### **English statement:**

- It is not the case that all dogs are fleabags.
- Translation:  $\neg \forall x \text{ Dog}(x) \rightarrow \text{Fleabag}(x)$

Another way to express the same meaning:

- There is a dog that is not a fleabag.
- Translation:  $\exists x Dog(x) \land \neg Fleabag(x)$
- Logically equivalent to:
  - $-\exists x \neg (Dog(x) \rightarrow Fleabag(x))$

**Conclusion:**  $\neg \forall x \ P(x)$  is equivalent to  $\exists x \ \neg P(x)$ 

# Negation of quantified statements (aka DeMorgan Laws for quantifiers)

| Negation | Equivalent |
|----------|------------|
| ¬∃x P(x) | ∀x ¬P(x)   |
| ¬∀x P(x) | ∃x ¬P(x)   |

## Theorems and proofs

- The truth value of some statements about the world is obvious and is easy to assign
- The truth of other statements may not be obvious, ...
  - .... But it may still follow (be derived) from known facts about the world

To show the truth value of such a statement following from other statements we need to provide a correct supporting argument

- a proof

#### **Problem:**

It is easy to make a mistake and argue the support incorrectly.

#### **Important questions:**

- When is the argument correct?
- How to construct a correct argument, what method to use?

## Theorems and proofs

- Theorem: a statement that can be shown to be true.
  - Typically the theorem looks like this:



#### Example:

Fermat's Little theorem:

- If p is a prime and a is an integer not divisible by p, then:  $a^{p-1} \equiv 1 \mod p$ 

## Theorems and proofs

- Theorem: a statement that can be shown to be true.
  - Typically the theorem looks like this:

$$(p1 \land p2 \land p3 \land ... \land pn) \rightarrow q$$

Premises (hypotheses) conclusion

Example:

**Premises (hypotheses)** 

Fermat's Little theorem:

- If p is a prime and a is an integer not divisible by p,

then: 
$$a^{p-1} \equiv 1 \mod p$$

conclusion

## Formal proofs

#### **Proof:**

- Provides an argument supporting the validity of the statement
- Proof of the theorem:
  - shows that the conclusion follows from premises
  - may use:
    - Premises
    - Axioms
    - Results of other theorems

#### Formal proofs:

 steps of the proofs follow logically from the set of premises and axioms

## Formal proofs

#### Formal proofs:

 show that steps of the proofs follow logically from the set of hypotheses and axioms



In this class we assume formal proofs in the propositional logic

Rules of inference: logically valid inference patterns

#### Example;

- Modus Ponens, or the Law of Detachment
- Rule of inference

$$p$$

$$p \to q$$

$$\therefore q$$

• Given p is true and the implication  $p \rightarrow q$  is true then q is true.

## Rules of inference: logically valid inference patterns Example;

- Modus Ponens, or the Law of Detachment
- Rule of inference p  $p \rightarrow q$   $\therefore q$
- Given p is true and the implication  $p \rightarrow q$  is true then q is true.

| p     | q     | $p \rightarrow q$ |
|-------|-------|-------------------|
| False | False | True              |
| False | True  | True              |
| True  | False | False             |
| True  | True  | True              |

## Rules of inference: logically valid inference patterns Example;

- Modus Ponens, or the Law of Detachment
- Rule of inference p  $p \rightarrow q$   $\therefore q$

Given p is true and the implication  $p \rightarrow q$  is true then q is true.

| p     | q     | $p \rightarrow q$ |
|-------|-------|-------------------|
| False | False | True              |
| False | True  | True              |
| True  | False | False             |
| True  | True  | True              |

Rules of inference: logically valid inference patterns

#### Example;

- Modus Ponens, or the Law of Detachment
- Rules of inference

$$p \longrightarrow q$$

$$\therefore q$$

- Given p is true and the implication  $p \rightarrow q$  is true then q is true.
- Tautology Form:  $(p \land (p \rightarrow q)) \rightarrow q$