
M. Hauskrecht 

 

 

CS 441 Discrete mathematics for CS 

CS 441 Discrete Mathematics for CS 

Lecture 5 

  

 

 

 

Milos Hauskrecht 

milos@cs.pitt.edu 

5329 Sennott Square 

 

 

          Predicate logic 

mailto:milos@joda.cis.temple.edu


M. Hauskrecht 

 

 

CS 441 Discrete mathematics for CS 

Announcements 

• Homework assignment 1 due today 

• Homework assignment 2: 

– posted on the course web page 

– Due on Monday January 28, 2013 

• Recitations today: 

– Practice problems related to assignment 2 
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Propositional logic: limitations 

Propositional logic: the world is described in terms of 
elementary propositions and their logical combinations  

Elementary statements: 

• Typically refer to objects, their properties and relations.  
But these are not explicitly represented in the propositional 
logic 

– Example:  

• “John is a UPitt student.” 

 

 

 

• Objects and properties are hidden in the statement, it is 
not possible to reason about them 

John a Upitt student 

object a property 
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Propositional logic: limitations 

(1) Statements that hold for many objects must be enumerated 

 

• Example:  

– John is a CS UPitt graduate  John has passed cs441 

– Ann is a CS Upitt graduate  Ann has passed cs441 

– Ken is a CS Upitt graduate  Ken has passed cs441 

– … 

• Solution: make statements with variables 

– x is a CS UPitt graduate  x has passed cs441 
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Propositional logic: limitations 

(2) Statements that define the property of the group of objects 

 

• Example:  

– All new cars must be registered.  

– Some of the CS graduates graduate with honor.  

 

• Solution: make statements with quantifiers   

– Universal quantifier –the property is satisfied by all 

members of the group 

– Existential quantifier – at least one member of the group 

satisfy the property 
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Predicate logic 

Remedies the limitations of the propositional logic 

• Explicitly models objects and their properties 

• Allows to make statements with variables and quantify them 

Predicate logic:  

• Constant –models a specific object 

 Examples: “John”, “France”, “7”  

• Variable – represents object of specific type (defined by the 
universe of discourse) 

 Examples: x, y  

  (universe of discourse can be people, students, numbers) 

• Predicate - over one, two or many variables or constants.  

– Represents properties or relations among objects 

 Examples: Red(car23), student(x), married(John,Ann) 
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Predicates 

Predicates represent properties or relations among objects 

• A predicate P(x) assigns a value true or false to each x 

depending on whether the property holds or not for x. 

• The assignment is best viewed as a big table with the variable x 

substituted for objects from the universe of discourse 

 

Example:  

• Assume Student(x) where the universe of discourse are people 

• Student(John) …. T   (if John is a student) 

• Student(Ann)  …. T  (if Ann is a student) 

• Student(Jane) ….. F  (if Jane is not a student) 

• … 
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Predicates 

Assume a predicate P(x) that represents the statement: 

•  x is a prime number 

 

Truth values for different x: 

• P(2)      T 

• P(3)       T 

• P(4)     F 

• P(5)     T 

• P(6)     F 

All statements P(2), P(3), P(4), P(5), P(6) are propositions 

… 

But P(x) with variable x is not a proposition 
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Compound statements in predicate logic 

Compound statements are obtained via logical connectives 

Examples: 

Student(Ann)  Student(Jane)     

• Translation: “Both Ann and Jane are students” 

• Proposition: yes.   

Country(Sienna)  River(Sienna)    

• Translation: “Sienna is a country or a river”  

• Proposition: yes.  

CS-major(x)  Student(x)    

• Translation: “if x is a CS-major then x is a student” 

• Proposition: no.  
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Quantified statements 

Predicate logic lets us to make statements about groups of 

objects 

• To do this we use special quantified expressions 

 

Two types of quantified statements: 

• universal  

 Example: ‘ all CS Upitt graduates have to pass cs441”  

– the statement is true for all graduates 

• existential 

 Example: ‘Some CS Upitt students graduate with honor.’ 

– the statement is true for some people  
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Universal quantifier 

Quantification converts a propositional function into a 

proposition by binding a variable to a set of values from the 

universe of discourse.  

 

Example:  

• Let P(x) denote x > x - 1. 

• Is P(x) a proposition?  No. Many possible substitutions. 

• Is x P(x) a proposition?  Yes. True if for all x from the 

universe of discourse P(x) is true.  
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Universally quantified statements 

Predicate logic lets us make statements about groups of objects 

 

Universally quantified statement 

• CS-major(x)  Student(x)    

– Translation: “if x is a CS-major then x is a student” 

– Proposition: no. 

 

•  x CS-major(x)  Student(x) 

– Translation: “(For all people it holds that) if a person is a 

CS-major then she is a student.” 

– Proposition: yes. 
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Existentially quantified statements 

Statements about groups of objects 

 

Example: 

• CS-Upitt-graduate (x)  Honor-student(x)    

– Translation: “x is a CS-Upitt-graduate and x is an honor 

student” 

– Proposition: no. 

 

•  x CS-Upitt-graduate (x)  Honor-student(x)  

– Translation: “There is a person who is a CS-Upitt-graduate 

and who is also an honor student.” 

– Proposition: yes. 
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Summary of quantified statements 

• When x P(x) and x P(x) are true and false? 

 

 

 

 

 

 

 

Suppose the elements in the universe of discourse can be 

enumerated as x1,  x2, ...,  xN then: 

• x P(x) is true whenever P(x1)  P(x2)  ...  P(xN) is true  

• x P(x) is true whenever P(x1)  P(x2)  ...  P(xN) is true.   

 Statement  When true?  When false? 

 x P(x) P(x) true for all x There is an x 

where P(x) is false. 

 x P(x) There is some x for 

which P(x) is true. 

P(x) is false for all 

x. 
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Translation with quantifiers 

Sentence:  

• All Upitt students are smart.  

    

• Assume: the domain of discourse of x are Upitt students 

• Translation: 

• x Smart(x)  

 

• Assume: the universe of discourse are students (all students): 

• x at(x,Upitt)  Smart(x) 

 

• Assume: the universe of discourse are people: 

• x student(x)  at(x,Upitt)  Smart(x) 
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Translation with quantifiers 

Sentence:  

• Someone at CMU is smart. 

  

• Assume: the domain of discourse are all CMU affiliates 

• Translation: 

•  x Smart(x)  

 

• Assume: the universe of discourse are people: 

•  x at(x,CMU)  Smart(x) 
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Translation with quantifiers 

• Assume two predicates S(x) and P(x) 

 

Universal statements typically tie with implications 

• All S(x) is P(x)  

– x ( S(x)  P(x) )  

• No S(x) is P(x) 

– x( S(x)  ¬P(x) ) 

 

Existential statements typically tie with conjunctions 

• Some S(x) is P(x) 

–  x (S(x)  P(x) ) 

• Some S(x) is not P(x)  

– x (S(x)  ¬P(x) ) 
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Nested quantifiers  

• More than one quantifier may be necessary to capture the 

meaning of a statement in the predicate logic. 

 

Example:  

• Every real number has its corresponding negative.  

• Translation:  

– Assume: 

• a real number is denoted as x and its negative as y 

• A predicate P(x,y) denotes: “x + y =0” 

• Then we can write: 

x  y P(x,y) 
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Nested quantifiers  

• More than one quantifier may be necessary to capture the 

meaning of a statement in the predicate logic. 

 

Example:  

• There is a person who loves everybody.   

• Translation:  

– Assume: 

• Variables x and y denote people   

• A predicate L(x,y) denotes: “x loves y” 

• Then we can write in the predicate logic: 

 x y  L(x,y) 
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Order of quantifiers  

The order of nested quantifiers matters if quantifiers are of 
different type 

• xy L(x,y)   is not the same as yx L(x,y)  

 

Example:  

• Assume L(x,y) denotes “x loves y” 

 

• Then:    xy L(x,y) 

• Translates to:  Everybody loves somebody. 

• And: y x L(x,y) 

• Translates to: There is someone who is loved by everyone. 

 

The meaning of the two is different.   
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Order of quantifiers  

The order of nested quantifiers does not matter if quantifiers 

are of the same type 

 

Example:  

• For all x and y, if x is a parent of y then y is a child of x 

• Assume:  

– Parent(x,y) denotes “x is a parent of y” 

– Child(x,y) denotes “x is a child of y” 

 

• Two equivalent ways to represent the statement:  

– x y Parent(x,y)  Child(y,x) 

– y x Parent(x,y)  Child(y,x) 
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Translation exercise  

Suppose: 

– Variables x,y denote people 

–  L(x,y) denotes “x loves y”. 

Translate:  

• Everybody loves Raymond.  x L(x,Raymond) 

• Everybody loves somebody.  xy L(x,y) 

• There is somebody whom everybody loves.   yx L(x,y) 

• There is somebody who Raymond doesn't love.

 y¬L(Raymond,y) 

• There is somebody whom no one loves.   

  y x ¬L(x,y) 
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Negation of quantifiers  

English statement:  

• Nothing is perfect.  

• Translation:   ¬ x Perfect(x) 

 

Another way to express the same meaning:  

• Everything is imperfect. 

• Translation: x ¬ Perfect(x) 

 

Conclusion: ¬ x P (x) is equivalent to x ¬ P(x) 
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Negation of quantifiers  

English statement:  

• It is not the case that all dogs are fleabags. 

• Translation: ¬ x Dog(x)  Fleabag(x) 

 

Another way to express the same meaning: 

• There is a dog that is not a fleabag.  

• Translation: x Dog(x)  ¬ Fleabag(x) 

 

• Logically equivalent to:  

– x ¬ ( Dog(x)  Fleabag(x) ) 

 

Conclusion: ¬ x P (x) is equivalent to x ¬ P(x) 
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Negation of quantified statements 

(aka DeMorgan Laws for quantifiers)  
 

 

 

 Negation Equivalent 

 ¬x P(x)  x ¬P(x) 

 ¬x P(x)  x ¬P(x) 
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Theorems and proofs 

• The truth value of some statements about the world is obvious 
and is easy to assign 

• The truth of other statements may not be obvious, … 

 …. But it may still follow (be derived) from known facts about 
the world 

To show the truth value of such a statement following from other 
statements we need to provide a correct supporting  argument 

    -   a proof  

 

Problem:  

• It is easy to make a mistake and argue the support incorrectly.  

Important questions: 

– When is the argument correct? 

– How to construct a correct argument, what method to use?  
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Theorems and proofs 

• Theorem: a statement that can be shown to be true. 

– Typically the theorem looks like this: 

(p1  p2  p3  … pn )  q 

 

 

 

• Example:  

 Fermat’s Little theorem:  

– If p is a prime and a is an integer not divisible by p,  

 then: 

 

  

Premises (hypotheses) conclusion 

pa p mod11 
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Theorems and proofs 

• Theorem: a statement that can be shown to be true. 

– Typically the theorem looks like this: 

(p1  p2  p3  … pn )  q 

 

 

 

• Example:  

 Fermat’s Little theorem:  

– If p is a prime and a is an integer not divisible by p,  

 then: 

 

  

Premises (hypotheses) conclusion 

pa p mod11 

Premises (hypotheses) 

conclusion 
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Formal proofs 

Proof:  

• Provides an argument supporting the validity of the statement 

• Proof of the theorem:  

– shows that the conclusion follows from premises 

– may use: 

• Premises 

• Axioms 

• Results of other theorems 

 

Formal proofs:  

• steps of the proofs follow logically from the set of premises and 

axioms 
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Formal proofs 

• Formal proofs:  

– show that steps of the proofs follow logically from the set of 
hypotheses and axioms 

 

 

 

 

 

 

 

 

 

In this class we assume formal proofs in the propositional logic 

  

axioms 

hypotheses 
conclusion 

+ 
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Rules of inference 

Rules of inference: logically valid inference patterns 

 

Example;  

• Modus Ponens, or the Law of  Detachment 

• Rule of inference  

     p 

     p  q 

      q 

 

• Given p is true and the implication p  q is true then q is true. 
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Rules of inference 

Rules of inference: logically valid inference patterns 

Example;  

• Modus Ponens, or the Law of  Detachment 

• Rule of inference   p 

     p  q 

      q 

• Given p is true and the implication p  q is true then q is true. 

  

False False True 

False 

True 

True 

True True 

True 

False False 

True 

p  q p q 
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Rules of inference 

Rules of inference: logically valid inference patterns 

Example;  

• Modus Ponens, or the Law of  Detachment 

• Rule of inference   p 

     p  q 

      q 

• Given p is true and the implication p  q is true then q is true. 

  

False False True 

False 

True 

True 

True True 

True 

False False 

True 

p  q p q 
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Rules of inference 

Rules of inference: logically valid inference patterns 

 

Example;  

• Modus Ponens, or the Law of  Detachment 

• Rules of inference  

  p 

  p  q 

   q 

 

• Given p is true and the implication p  q is true then q is true. 

• Tautology Form:  (p  (p  q))  q 

  


