CS 441 Discrete Mathematics for CS Lecture 4

Predicate logic

Milos Hauskrecht

<u>milos@</u>cs.pitt.edu
5329 Sennott Square

CS 441 Discrete mathematics for CS

M. Hauskrecht

Propositional logic: review

- **Propositional logic:** a formal language for making logical inferences
- A proposition is a statement that is either true or false.
- A compound proposition can be created from other propositions using logical connectives
- The truth of a compound proposition is defined by truth values of elementary propositions and the meaning of connectives.
- The truth table for a compound proposition: table with entries (rows) for all possible combinations of truth values of elementary propositions.

CS 441 Discrete mathematics for CS

Tautology and Contradiction

Definitions:

- A compound proposition that is always true for all possible truth values of the propositions is called a **tautology**.
- A compound proposition that is always false is called a **contradiction**.
- A proposition that is neither a tautology nor contradiction is called a **contingency**.

Example: $p \land \neg p$ is a **contradiction**.

р	¬р	p ∧ ¬p
Т	F	F
F	Т	F

CS 441 Discrete mathematics for CS

M. Hauskrecht

Equivalence

- Some propositions may be equivalent. Their truth values in the truth table are the same.
- Example: $\mathbf{p} \to \mathbf{q}$ is equivalent to $\neg \mathbf{q} \to \neg \mathbf{p}$ (contrapositive)

р	q	$p \rightarrow q$	$\neg q \rightarrow \neg p$
Т	Т	Т	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

• Equivalent statements are important for logical reasoning since they can be substituted and can help us to make a logical argument.

CS 441 Discrete mathematics for CS

Important logical equivalences

- Identity
 - $-\ p \wedge T <=>\ p$
 - $p \lor F \iff p$
- Domination
 - $p \lor T \iff T$
 - $p \wedge F \iff F$
- Idempotent
 - $p \lor p \iff p$
 - $p \wedge p \iff p$

- -

CS 441 Discrete mathematics for CS

M. Hauskrecht

Showing logical equivalence

Example: Show $(p \land q) \rightarrow p$ is a tautology

In other words $((p \land q) \rightarrow p \iff T)$

Proof via truth table:

р	q	p∧q	$(p \land q) \rightarrow p$
Т	Т	Т	T
Т	F	F	Т
F	Т	F	Т
F	F	F	T

CS 441 Discrete mathematics for CS

Showing logical equivalences

 Equivalences can be used in proofs. A proposition or its part can be transformed using equivalences and some conclusion can be reached.

Example: Show that $(p \land q) \rightarrow p$ is a tautology.

• Proof: (we must show $(p \land q) \rightarrow p \iff T$)

$$\begin{array}{lll} (p \wedge q) \rightarrow p & <=> \neg (p \wedge q) \vee p & Useful \\ <=> [\neg p \vee \neg q] \vee p & DeMorgan \\ <=> [\neg q \vee \neg p] \vee p & Commutative \\ <=> \neg q \vee [\neg p \vee p] & Associative \\ <=> \neg q \vee [T] & Useful \\ <=> T & Domination \\ \end{array}$$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Propositional logic

- **Definition**:
 - A proposition is a statement that is either true or false.
- Examples:
 - Pitt is located in the Oakland section of Pittsburgh.
 - -5+2=8.
 - It is raining today
 - 2 is a prime number
 - If (you do not drive over 65 mph) then (you will not get a speeding ticket).
- Not a proposition:
 - How are you?
 - -x+5=3

CS 441 Discrete mathematics for CS

Limitations of the propositional logic

Propositional logic: the world is described in terms of elementary propositions and their logical combinations

Elementary statements:

- Typically refer to objects, their properties and relations.
 But these are not explicitly represented in the propositional logic
 - Example:
 - "John is a UPitt student."

 John a Upitt student

 object a property
 - Objects and properties are hidden in the statement, it is not possible to reason about them

CS 441 Discrete mathematics for CS

M. Hauskrecht

Limitations of the propositional logic

- (1) Statements that must be repeated for many objects
 - In propositional logic these must be exhaustively enumerated
- Example:
 - If John is a CS UPitt graduate then John has passed cs441

Translation:

- John is a CS UPitt graduate → John has passed cs441
 Similar statements can be written for other Upitt graduates:
- Ann is a CS Upitt graduate → Ann has passed cs441
- Ken is a CS Upitt graduate → Ken has passed cs441
- ...
- What is a more natural solution to express the above knowledge?

CS 441 Discrete mathematics for CS

Limitations of the propositional logic

(1) Statements that must be repeated for many objects

- Example:
 - If John is a CS UPitt graduate then John has passed cs441
 Translation:
 - John is a CS UPitt graduate → John has passed cs441
 Similar statements can be written for other Upitt graduates:
 - Ann is a CS Upitt graduate → Ann has passed cs441
 - Ken is a CS Upitt graduate → Ken has passed cs441
 - ...
- Solution: make statements with variables
 - If x is a CS Upitt graduate then x has passed cs441
 - x is a CS UPitt graduate \rightarrow x has passed cs441

CS 441 Discrete mathematics for CS

M. Hauskrecht

Limitations of the propositional logic

- (2) Statements that define the property of the group of objects
- Example:
 - All new cars must be registered.
 - Some of the CS graduates graduate with honors.
- Solution: make statements with quantifiers
 - Universal quantifier –the property is satisfied by all members of the group
 - Existential quantifier at least one member of the group satisfy the property

CS 441 Discrete mathematics for CS

Predicate logic

Remedies the limitations of the propositional logic

- Explicitly models objects and their properties
- Allows to make statements with variables and quantify them

Basic building blocks of the predicate logic:

- Constant –models a specific object Examples: "John", "France", "7"
- Variable represents object of specific type (defined by the universe of discourse)

Examples: x, y

(universe of discourse can be people, students, numbers)

- **Predicate** over one, two or many variables or constants.
 - Represents properties or relations among objects

Examples: Red(car23), student(x), married(John,Ann)

CS 441 Discrete mathematics for CS

M. Hauskrecht

Predicates

Predicates represent properties or relations among objects

A predicate P(x) assigns a value **true or false** to each x depending on whether the property holds or not for x.

• The assignment is best viewed as a big table with the variable x substituted for objects from *the universe of discourse*

Example:

- Assume Student(x) where the universe of discourse are people
- Student(John) T (if John is a student)
- Student(Ann) T (if Ann is a student)
- Student(Jane) F (if Jane is not a student)

• ...

CS 441 Discrete mathematics for CS

Predicates

Assume a predicate P(x) that represents the statement:

T

• x is a prime number

What are the truth values of:

- P(2) T
- P(3)
- P(4) F
- P(5) T
- P(6) F
- P(7)

CS 441 Discrete mathematics for CS

M. Hauskrecht

Predicates

Assume a predicate P(x) that represents the statement:

• x is a prime number

What are the truth values of:

- P(2) T
- P(3)
- P(4) F
- P(5)
- P(6) F
- P(7)

All statements P(2), P(3), P(4), P(5), P(6), P(7) are propositions

CS 441 Discrete mathematics for CS

Predicates

Assume a predicate P(x) that represents the statement:

• x is a prime number

What are the truth values of:

•	P(2)	,	Γ
•	P(3)	,	Г

- P(4) FP(5) T
- P(6)P(7)T

Is P(x) a proposition? No. Many possible substitutions are possible.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Predicates

Predicates can have more arguments which represent the relations between objects

Example:

- Let Q(x,y) denote 'x+5 >y'
 - Is Q(x,y) a proposition? No!
 - Is Q(3,7) a proposition? Yes. It is true.
 - What is the truth value of
 - Q(3,7) T
 - Q(1,6) F
 - Q(2,2) T
 - Is Q(3,y) a proposition? No! We cannot say if it is true or false.

CS 441 Discrete mathematics for CS

Compound statements in predicate logic

Compound statements are obtained via logical connectives

Examples:

 $Student(Ann) \wedge Student(Jane)$

- Translation: "Both Ann and Jane are students"
- Proposition: yes.

Country(Sienna) ∨ River(Sienna)

- Translation: "Sienna is a country or a river"
- Proposition: yes.

CS-major(x) \rightarrow Student(x)

- **Translation:** "if x is a CS-major then x is a student"
- Proposition: no.

M. Hauskrecht

Predicates

Important:

• statement P(x) is **not a proposition** since there are more objects it can be applied to

This is the same as in propositional logic ...

... But the difference is:

- predicate logic allows us to explicitly manipulate and substitute for the objects
- Predicate logic permits quantified sentences where variables are substituted for statements about the group of objects

CS 441 Discrete mathematics for CS

Quantified statements

Predicate logic lets us to make statements about groups of objects

• To do this we use special quantified expressions

Two types of quantified statements:

universal

Example: 'all CS Upitt graduates have to pass cs441"

- the statement is true for all graduates
- existential

Example: 'Some CS Upitt students graduate with honor.'

- the statement is true for some people

CS 441 Discrete mathematics for CS

M. Hauskrecht

Universal quantifier

<u>Defn</u>: The universal quantification of P(x) is the proposition:

"P(x) is true for all values of x in the domain of discourse." The notation $\forall \mathbf{x} \ \mathbf{P}(\mathbf{x})$ denotes the universal quantification of $P(\mathbf{x})$, and is expressed as **for every x**, $\mathbf{P}(\mathbf{x})$.

Example:

- Let P(x) denote x > x 1.
- What is the truth value of $\forall x P(x)$?
- Assume the universe of discourse of x are all real numbers.

CS 441 Discrete mathematics for CS

Universal quantifier

<u>Defn</u>: The universal quantification of P(x) is the proposition: P(x) is true for all values of x in the domain of discourse." The notation $\forall x P(x)$ denotes the universal quantification of P(x), and is expressed as **for every** x, P(x).

Example:

- Let P(x) denote x > x 1.
- What is the truth value of $\forall x P(x)$?
- Assume the universe of discourse of x is all real numbers.
- Answer: Since every number x is greater than itself minus 1. Therefore, $\forall x P(x)$ is true.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Universal quantifier

Quantification converts a propositional function into **a proposition** by binding a variable to a set of values from the universe of discourse.

Example:

- Let P(x) denote x > x 1.
- Is P(x) a proposition? No. Many possible substitutions.
- Is $\forall x P(x)$ a proposition? Yes. True if for all x from the universe of discourse P(x) is true.

CS 441 Discrete mathematics for CS

Universally quantified statements

Predicate logic lets us make statements about groups of objects

Universally quantified statement

- CS-major(x) \rightarrow Student(x)
 - **Translation:** "if x is a CS-major then x is a student"
 - Proposition: no.
- $\forall x \text{ CS-major}(x) \rightarrow \text{Student}(x)$
 - Translation: "(For all people it holds that) if a person is a CS-major then she is a student."
 - Proposition: yes.

M. Hauskrecht

Existential quantifier

Definition: The **existential quantification** of P(x) is the proposition "There exists an element in the domain (universe) of discourse such that P(x) is true." The notation $\exists x \ P(x)$ denotes the existential quantification of P(x), and is expressed as **there is an x such that P(x) is true**.

Example 1:

- Let T(x) denote x > 5 and x is from Real numbers.
- What is the truth value of $\exists x T(x)$?
- Answer:
- Since 10 > 5 is true. Therefore, it is **true that** $\exists x T(x)$.

CS 441 Discrete mathematics for CS

Existential quantifier

Definition: The **existential quantification** of P(x) is the proposition "There exists an element in the domain (universe) of discourse such that P(x) is true." The notation $\exists x \ P(x)$ denotes the existential quantification of P(x), and is expressed as **there is an x such that P(x) is true**.

Example 2:

- Let Q(x) denote x = x + 2 where x is real numbers
- What is the truth value of $\exists x \ Q(x)$?
- Answer: Since no real number is 2 larger than itself, the truth value of $\exists x \ Q(x)$ is false.

CS 441 Discrete mathematics for CS