
1

M. HauskrechtCS 441 Discrete mathematics for CS

CS 441 Discrete Mathematics for CS
Lecture 3

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

Propositional logic

M. HauskrechtCS 441 Discrete mathematics for CS

Propositional logic: review

• Propositional logic: a formal language for making logical
inferences

• A proposition is a statement that is either true or false.

• A compound proposition can be created from other
propositions using logical connectives

• The truth of a compound proposition is defined by truth
values of elementary propositions and the meaning of
connectives.

• The truth table for a compound proposition: table with
entries (rows) for all possible combinations of truth values of
elementary propositions.

2

M. HauskrechtCS 441 Discrete mathematics for CS

Compound propositions

• Let p: 2 is a prime ….. T

q: 6 is a prime ….. F

• Determine the truth value of the following statements:

¬ p:

p  q :

p  ¬q:

p  q :

p  q:

p  q:

q  p:

M. HauskrechtCS 441 Discrete mathematics for CS

Compound propositions

• Let p: 2 is a prime ….. T

q: 6 is a prime ….. F

• Determine the truth value of the following statements:

¬ p: F

p  q : F

p  ¬q: T

p  q : T

p  q: T

p  q: F

q  p: T

3

M. HauskrechtCS 441 Discrete mathematics for CS

Constructing the truth table

• Example: Construct the truth table for
(p  q)  (¬p  q)

M. HauskrechtCS 441 Discrete mathematics for CS

Constructing the truth table

• Example: Construct the truth table for
(p  q)  (¬p  q)

p q ¬p p  q ¬p  q (pq)
(¬pq)

T T

T F

F T

F F

Rows: all possible
combinations of values

for elementary
propositions:

2n values

4

M. HauskrechtCS 441 Discrete mathematics for CS

Constructing the truth table

• Example: Construct the truth table for
(p  q)  (¬p  q)

p q ¬p p  q ¬p  q (pq)
(¬pq)

T T

T F

F T

F F

Typically the target
(unknown) compound

proposition and its
values

Auxiliary compound
propositions and their

values

M. HauskrechtCS 441 Discrete mathematics for CS

Constructing the truth table

• Examples: Construct a truth table for
(p  q)  (¬p  q)

p q ¬p p  q ¬p  q (pq)
(¬pq)

T T F T F F

T F F F T F

F T T T T T

F F T T F F

5

M. HauskrechtCS 441 Discrete mathematics for CS

Computer representation of True and False

We need to encode two values True and False:
• Computers represents data and programs using 0s and 1s
• Logical truth values – True and False
• A bit is sufficient to represent two possible values:

– 0 (False) or 1(True)

• A variable that takes on values 0 or 1 is called a Boolean
variable.

• Definition: A bit string is a sequence of zero or more bits.
The length of this string is the number of bits in the string.

M. HauskrechtCS 441 Discrete mathematics for CS

Bitwise operations

• T and F replaced with 1 and 0

p q p  q p  q

1 1 1 1

1 0 1 0

0 1 1 0

0 0 0 0

p ¬p

1
0

0
1

6

M. HauskrechtCS 441 Discrete mathematics for CS

Bitwise operations

• Examples:

1011 0011 1011 0011 1011 0011
 0110 1010  0110 1010  0110 1010

M. HauskrechtCS 441 Discrete mathematics for CS

Bitwise operations

• Examples:

1011 0011 1011 0011 1011 0011
 0110 1010  0110 1010  0110 1010

1111 1011 0010 0010 1101 1001

7

M. Hauskrecht

Applications of propositional logic

• Translation of English sentences

• Artificial intelligence:

– Representation of knowledge about the world

– Inferences about the knowledge

• Logic circuits

CS 441 Discrete mathematics for CS

M. HauskrechtCS 441 Discrete mathematics for CS

Translation

If you are older than 13 or you are with your parents then you can
attend a PG-13 movie.

Parse:
• If (you are older than 13 or you are with your parents) then

(you can attend a PG-13 movie)
– A= you are older than 13
– B= you are with your parents
– C=you can attend a PG-13 movie

• Translation: A  B  C

• But why do we want to do it this way?

8

M. HauskrechtCS 441 Discrete mathematics for CS

Translation

• General rule for translation.
• Look for patterns corresponding to logical connectives in the

sentence and use them to define elementary propositions.

• Example:

You can have free coffee if you are senior citizen and it is a Tuesday

Step 1 find logical connectives

M. HauskrechtCS 441 Discrete mathematics for CS

Translation

• General rule for translation.
• Look for patterns corresponding to logical connectives in the

sentence and use them to define elementary propositions.

• Example:

You can have free coffee if you are senior citizen and it is a Tuesday

Step 1 find logical connectives

9

M. HauskrechtCS 441 Discrete mathematics for CS

Translation

• General rule for translation.
• Look for patterns corresponding to logical connectives in the

sentence and use them to define elementary propositions.

• Example:

You can have free coffee if you are senior citizen and it is a Tuesday

Step 2 break the sentence into elementary propositions

M. HauskrechtCS 441 Discrete mathematics for CS

Translation

• General rule for translation.
• Look for patterns corresponding to logical connectives in the

sentence and use them to define elementary propositions.

• Example:

You can have free coffee if you are senior citizen and it is a Tuesday

Step 2 break the sentence into elementary propositions

a b c

10

M. HauskrechtCS 441 Discrete mathematics for CS

Translation

• General rule for translation .
• Look for patterns corresponding to logical connectives in the

sentence and use them to define elementary propositions.

• Example:

You can have free coffee if you are senior citizen and it is a Tuesday

Step 3 rewrite the sentence in propositional logic

a b c

b  c  a

M. HauskrechtCS 441 Discrete mathematics for CS

Translation

• Assume two elementary statements:
– p: you drive over 65 mph ; q: you get a speeding ticket

• Translate each of these sentences to logic
– you do not drive over 65 mph. (¬p)
– you drive over 65 mph, but you don't get a speeding

ticket. (p  ¬q)
– you will get a speeding ticket if you drive over 65 mph.

(p  q)
– if you do not drive over 65 mph then you will not get a

speeding ticket.(¬p  ¬q)
– driving over 65 mph is sufficient for getting a speeding

ticket. (p  q)
– you get a speeding ticket, but you do not drive over 65

mph. (q  ¬p)

11

M. HauskrechtCS 441 Discrete mathematics for CS

Applications: logical inferences

Artificial Intelligence:
• Studies the design of programs that behave/act intelligently
• Many AI problems require the ability to represent and reason

with the knowledge about the domain of interest

• Expert systems:
– Represent the knowledge about the world or domain of

interest (e.g. medicine) using some kind of logic
– Support inferences consistent with the logic

M. HauskrechtCS 441

Example: MYCIN

• MYCIN: an expert system for diagnosis of bacterial infections

• Knowledge (represented in propositional logic) consists of:

– Facts about a specific patient case

– Rules describing relations between entities in the bacterial
infection domain

• Inferences:

– manipulates the facts and known relations to answer
diagnostic queries (consistent with findings and rules)

1. The stain of the organism is gram-positive, and
2. The morphology of the organism is coccus, and
3. The growth conformation of the organism is chains
the identity of the organism is streptococcus

If

Then

12

M. HauskrechtCS 441 Discrete mathematics for CS

Tautology and Contradiction
Definitions:
• A compound proposition that is always true for all possible

truth values of the propositions is called a tautology.
• A compound proposition that is always false is called a

contradiction.
• A proposition that is neither a tautology nor contradiction is

called a contingency.
•
Example: p  ¬p is a tautology.

p ¬p p  ¬p

T
F

F
T

T
T

M. HauskrechtCS 441 Discrete mathematics for CS

Tautology and Contradiction
Definitions:

• A compound proposition that is always true for all possible
truth values of the propositions is called a tautology.

• A compound proposition that is always false is called a
contradiction.

• A proposition that is neither a tautology nor contradiction is
called a contingency.

Example: p  ¬p is a contradiction.

p ¬p p  ¬p

T
F

F
T

F
F

13

M. HauskrechtCS 441 Discrete mathematics for CS

Equivalence
• Some propositions may be equivalent. Their truth values in the

truth table are the same.

• Example: p  q is equivalent to ¬q  ¬p (contrapositive)

• Equivalent statements are important for logical reasoning
since they can be substituted and can help us to make a logical
argument.

p q p  q ¬q  ¬p

T T T T

T F F F

F T T T

F F T T

M. HauskrechtCS 441 Discrete mathematics for CS

Logical equivalence
• Definition: The propositions p and q are called logically

equivalent if p  q is a tautology (alternately, if they have the
same truth table). The notation p <=> q denotes p and q are
logically equivalent.

Examples of equivalences:

• DeMorgan's Laws:

• 1) ¬(p  q) <=> ¬p  ¬q

• 2) ¬(p  q) <=> ¬p  ¬q

14

M. HauskrechtCS 441 Discrete mathematics for CS

Equivalence
Example of important equivalences

• DeMorgan's Laws:

• 1) ¬(p  q) <=> ¬p  ¬q

• 2) ¬(p  q) <=> ¬p  ¬q

Use the truth table to prove that the two propositions are
logically equivalent

p q ¬p ¬q ¬(p  q) ¬p  ¬q

T T F F F F

T F F T F F

F T T F F F

F F T T T T

M. HauskrechtCS 441 Discrete mathematics for CS

Equivalence
Example of important equivalences

• DeMorgan's Laws:

• 1) ¬(p  q) <=> ¬p  ¬q

• 2) ¬(p  q) <=> ¬p  ¬q

Use the truth table to prove that the two propositions are
logically equivalent

p q ¬p ¬q ¬(p  q) ¬p  ¬q

T T F F F F

T F F T F F

F T T F F F

F F T T T T

15

M. HauskrechtCS 441 Discrete mathematics for CS

Important logical equivalences

• Identity

– p  T <=> p

– p  F <=> p

• Domination

– p  T <=> T

– p  F <=> F

• Idempotent

– p  p <=> p

– p  p <=> p

M. HauskrechtCS 441 Discrete mathematics for CS

Important logical equivalences

• Double negation

– ¬(¬p) <=> p

• Commutative

– p  q <=> q  p

– p  q <=> q  p

• Associative

– (p  q)  r <=> p  (q  r)

– (p  q)  r <=> p  (q  r)

16

M. HauskrechtCS 441 Discrete mathematics for CS

Important logical equivalences

• Distributive

– p  (q  r) <=> (p  q)  (p  r)

– p  (q  r) <=> (p  q)  (p  r)

• De Morgan

– ¬(p  q) <=> ¬p  ¬q

– (p  q) <=> ¬p  ¬q

• Other useful equivalences

– p  ¬p <=> T

– p  ¬p <=> F

– p  q <=> (¬p  q)

M. HauskrechtCS 441 Discrete mathematics for CS

Using logical equivalences

• Equivalences can be used in proofs. A proposition or its part
can be transformed using equivalences and some conclusion
can be reached.

Example: Show that (p  q)  p is a tautology.

• Proof: (we must show (p  q)  p <=> T)

(p  q)  p <=> ¬(p  q)  p Useful

17

M. HauskrechtCS 441 Discrete mathematics for CS

Using logical equivalences

• Equivalences can be used in proofs. A proposition or its part
can be transformed using equivalences and some conclusion
can be reached.

Example: Show that (p  q)  p is a tautology.

• Proof: (we must show (p  q)  p <=> T)

(p  q)  p <=> ¬(p  q)  p Useful

<=> [¬p  ¬q]  p DeMorgan

M. HauskrechtCS 441 Discrete mathematics for CS

Using logical equivalences

• Equivalences can be used in proofs. A proposition or its part
can be transformed using equivalences and some conclusion
can be reached.

Example: Show that (p  q)  p is a tautology.

• Proof: (we must show (p  q)  p <=> T)

(p  q)  p <=> ¬(p  q)  p Useful

<=> [¬p  ¬q]  p DeMorgan

<=> [¬q  ¬p]  p Commutative

18

M. HauskrechtCS 441 Discrete mathematics for CS

Using logical equivalences

• Equivalences can be used in proofs. A proposition or its part
can be transformed using equivalences and some conclusion
can be reached.

Example: Show that (p  q)  p is a tautology.

• Proof: (we must show (p  q)  p <=> T)

(p  q)  p <=> ¬(p  q)  p Useful

<=> [¬p  ¬q]  p DeMorgan

<=> [¬q  ¬p]  p Commutative

<=> ¬q  [¬p  p] Associative

M. HauskrechtCS 441 Discrete mathematics for CS

Using logical equivalences

• Equivalences can be used in proofs. A proposition or its part
can be transformed using equivalences and some conclusion
can be reached.

Example: Show that (p  q)  p is a tautology.

• Proof: (we must show (p  q)  p <=> T)

(p  q)  p <=> ¬(p  q)  p Useful

<=> [¬p  ¬q]  p DeMorgan

<=> [¬q  ¬p]  p Commutative

<=> ¬q  [¬p  p] Associative

<=> ¬q  [T] Useful

19

M. HauskrechtCS 441 Discrete mathematics for CS

Using logical equivalences

• Equivalences can be used in proofs. A proposition or its part
can be transformed using equivalences and some conclusion
can be reached.

Example: Show that (p  q)  p is a tautology.

• Proof: (we must show (p  q)  p <=> T)

(p  q)  p <=> ¬(p  q)  p Useful

<=> [¬p  ¬q]  p DeMorgan

<=> [¬q  ¬p]  p Commutative

<=> ¬q  [¬p  p] Associative

<=> ¬q  [T] Useful

<=> T Domination

M. HauskrechtCS 441 Discrete mathematics for CS

Using logical equivalences

• Equivalences can be used in proofs. A proposition or its part
can be transformed using equivalences and some conclusion
can be reached.

Example: Show (p  q)  p is a tautology.

• Alternative proof:

p q p  q (p  q)p

T T T T

T F F T

F T F T

F F F T

20

M. HauskrechtCS 441 Discrete mathematics for CS

Using logical equivalences

• Equivalences can be used in proofs. A proposition or its part
can be transformed using equivalences and some conclusion
can be reached.

• Proofs that rely on logical equivalences can replace truth
table approach

– Why?

– The truth table has 2n rows, where n is the number of
elementary propositions

– If n is large building the truth table may become infeasible

M. HauskrechtCS 441 Discrete mathematics for CS

Using logical equivalences

• Equivalences can be used in proofs. A proposition or its part
can be transformed using equivalences and some conclusion
can be reached.

• Example 2: Show (p  q) <=> (¬q  ¬p)

Proof:

• (p  q) <=> (¬q  ¬p)

• <=> ?

21

M. HauskrechtCS 441 Discrete mathematics for CS

Using logical equivalences

• Equivalences can be used in proofs. A proposition or its part
can be transformed using equivalences and some conclusion
can be reached.

• Example 2: Show (p  q) <=> (¬q  ¬p)

Proof:

• (p  q) <=> (¬q  ¬p)

• <=> ¬(¬q)  (¬p) Useful

• <=> q  (¬p) Double negation

• <=> ¬p  q Commutative

• <=> p  q Useful

End of proof

