CS 441 Discrete Mathematics for CS Lecture 3

Propositional logic

Milos Hauskrecht

milos@cs.pitt.edu
5329 Sennott Square

CS 441 Discrete mathematics for CS

M. Hauskrecht

Propositional logic: review

- **Propositional logic:** a formal language for making logical inferences
- A proposition is a statement that is either true or false.
- A compound proposition can be created from other propositions using logical connectives
- The truth of a compound proposition is defined by truth values of elementary propositions and the meaning of connectives.
- The truth table for a compound proposition: table with entries (rows) for all possible combinations of truth values of elementary propositions.

CS 441 Discrete mathematics for CS

Compound propositions

- Let p: 2 is a prime **T** q: 6 is a prime **F**
- Determine **the truth value** of the following statements:

¬ p:

 $p \wedge q$:

 $p \wedge \neg q$:

 $p \vee q$:

 $p\oplus q\text{:}$

 $p \rightarrow q$:

 $q \rightarrow p$:

CS 441 Discrete mathematics for CS

M. Hauskrecht

Compound propositions

- Let p: 2 is a prime **T**
 - q: 6 is a prime **F**
- Determine **the truth value** of the following statements:

¬ p: **F**

 $p \wedge q : \mathbf{F}$

 $p \wedge \neg q$: **T**

 $p \vee q : T$

 $p \oplus q \colon T$

 $p \rightarrow q$: **F**

 $q \rightarrow p$: T

CS 441 Discrete mathematics for CS

Constructing the truth table

• Example: Construct the truth table for $(p \to q) \land (\neg p \leftrightarrow q)$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Constructing the truth table

• Example: Construct the truth table for $(p \rightarrow q) \land (\neg p \leftrightarrow q)$

CS 441 Discrete mathematics for CS

Constructing the truth table

• Examples: Construct a truth table for $(p \rightarrow q) \land (\neg p \leftrightarrow q)$

р	q	¬p	$p \rightarrow q$	¬p ↔ q	(p→q)∧ (¬p↔q)
Т	Т	F	Т	F	F
Т	F	F	F	Т	F
F	Т	Т	Т	Т	Т
F	F	Т	Т	F	F

CS 441 Discrete mathematics for CS

Computer representation of True and False

We need to encode two values True and False:

- Computers represents data and programs using 0s and 1s
- Logical truth values True and False
- A bit is sufficient to represent two possible values:
 - 0 (False) or 1(True)
- A variable that takes on values 0 or 1 is called a **Boolean** variable.
- **<u>Definition</u>**: A **bit string** is a sequence of zero or more bits. The **length** of this string is the number of bits in the string.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Bitwise operations

• T and F replaced with 1 and 0

р	q	$p \lor q$	p ∧ q
1	1	1	1
1	0	1	0
0	1	1	0
0	0	0	0

р	¬р
1	0
0	1

CS 441 Discrete mathematics for CS

Bitwise operations

• Examples:

 $\begin{array}{cccc} 1011 \ 0011 & & 1011 \ 0011 \\ \lor \ \underline{0110} \ 1010 & & \land \ \underline{0110} \ 1010 \end{array}$

1011 0011 ⊕ <u>0110 1010</u>

CS 441 Discrete mathematics for CS

M. Hauskrecht

Bitwise operations

• Examples:

 $\begin{array}{c} 1011\ 0011 \\ \vee\ \underline{0110\ 1010} \\ 1111\ 1011 \end{array}$

1011 0011 \[\times \frac{0110 1010}{0010 0010} \] 1011 0011 ⊕ 0110 1010 1101 1001

CS 441 Discrete mathematics for CS

Applications of propositional logic

- Translation of English sentences
- Artificial intelligence:
 - Representation of knowledge about the world
 - Inferences about the knowledge
- Logic circuits

CS 441 Discrete mathematics for CS

M. Hauskrecht

Translation

If you are older than 13 or you are with your parents then you can attend a PG-13 movie.

Parse:

- If (you are older than 13 or you are with your parents) then (you can attend a PG-13 movie)
 - A= you are older than 13
 - B= you are with your parents
 - C=you can attend a PG-13 movie
- Translation: $A \lor B \to C$
- But why do we want to do it this way?

CS 441 Discrete mathematics for CS

Translation

- General rule for translation.
- Look for patterns corresponding to logical connectives in the sentence and use them to define elementary propositions.
- Example:

You can have free coffee if you are senior citizen and it is a Tuesday

Step 1 find logical connectives

CS 441 Discrete mathematics for CS

M. Hauskrecht

Translation

- General rule for translation.
- Look for patterns corresponding to logical connectives in the sentence and use them to define elementary propositions.
- Example:

You can have free coffee if you are senior citizen and t is a Tuesday

Step 1 find logical connectives

CS 441 Discrete mathematics for CS

Translation

- General rule for translation.
- Look for patterns corresponding to logical connectives in the sentence and use them to define elementary propositions.
- Example:

You can have free coffee if you are senior citizen and t is a Tuesday

Step 2 break the sentence into elementary propositions

CS 441 Discrete mathematics for CS

M. Hauskrecht

Translation

- General rule for translation.
- Look for patterns corresponding to logical connectives in the sentence and use them to define elementary propositions.
- Example:

a

You can have free coffee if you are senior citizen and t is a Tuesday

b

Step 2 break the sentence into elementary propositions

CS 441 Discrete mathematics for CS

M. Hauskrecht

c

Translation

- General rule for translation.
- Look for patterns corresponding to logical connectives in the sentence and use them to define elementary propositions.
- Example:

You can have free coffee if you are senior citizen and t is a Tuesday

a b c

Step 3 rewrite the sentence in propositional logic

 $\mathbf{b} \wedge \mathbf{c} \rightarrow \mathbf{a}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Translation

- Assume two elementary statements:
 - p: you drive over 65 mph; q: you get a speeding ticket
- Translate each of these sentences to logic
 - you do not drive over 65 mph.
 - you drive over 65 mph, but you don't get a speeding ticket. (p ∧ ¬q)
 - you will get a speeding ticket if you drive over 65 mph. $(p \rightarrow q)$
 - if you do not drive over 65 mph then you will not get a speeding ticket. $(\neg p \rightarrow \neg q)$
 - driving over 65 mph is sufficient for getting a speeding ticket. $(p \rightarrow q)$
 - you get a speeding ticket, but you do not drive over 65 mph. (q ∧ ¬p)

CS 441 Discrete mathematics for CS

M. Hauskrecht

(¬p)

Applications: logical inferences

Artificial Intelligence:

- Studies the design of programs that behave/act intelligently
- Many AI problems require the ability to represent and reason with the knowledge about the domain of interest

• Expert systems:

- Represent the knowledge about the world or domain of interest (e.g. medicine) using some kind of logic
- Support inferences consistent with the logic

CS 441 Discrete mathematics for CS

M. Hauskrecht

Example: MYCIN

- MYCIN: an expert system for diagnosis of bacterial infections
- Knowledge (represented in propositional logic) consists of:
 - Facts about a specific patient case
 - Rules describing relations between entities in the bacterial infection domain

Tf

- 1. The stain of the organism is gram-positive, and
- 2. The morphology of the organism is coccus, and
- 3. The growth conformation of the organism is chains

Then the identity of the organism is streptococcus

Inferences:

 manipulates the facts and known relations to answer diagnostic queries (consistent with findings and rules)

CS 441

Tautology and Contradiction

Definitions:

- A compound proposition that is always true for all possible truth values of the propositions is called a **tautology**.
- A compound proposition that is always false is called a **contradiction**.
- A proposition that is neither a tautology nor contradiction is called a contingency.

•

Example: $p \lor \neg p$ is a **tautology.**

р	¬р	p ∨ ¬p
T	F	Т
F	Т	Т

CS 441 Discrete mathematics for CS

M. Hauskrecht

Tautology and Contradiction

Definitions:

- A compound proposition that is always true for all possible truth values of the propositions is called a **tautology**.
- A compound proposition that is always false is called a contradiction.
- A proposition that is neither a tautology nor contradiction is called a contingency.

Example: $p \land \neg p$ is a **contradiction**.

р	¬р	р∧¬р
Т	F	F
F	Т	F

CS 441 Discrete mathematics for CS

Equivalence

- Some propositions may be equivalent. Their truth values in the truth table are the same.
- Example: $\mathbf{p} \to \mathbf{q}$ is equivalent to $\neg \mathbf{q} \to \neg \mathbf{p}$ (contrapositive)

р	q	$p \rightarrow q$	$\neg q \rightarrow \neg p$
Т	Т	Т	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

• Equivalent statements are important for logical reasoning since they can be substituted and can help us to make a logical argument.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Logical equivalence

Definition: The propositions p and q are called logically equivalent if p ↔ q is a tautology (alternately, if they have the same truth table). The notation p <=> q denotes p and q are logically equivalent.

Examples of equivalences:

- DeMorgan's Laws:
- 1) $\neg (p \lor q) \iff \neg p \land \neg q$
- 2) $\neg (p \land q) \iff \neg p \lor \neg q$

CS 441 Discrete mathematics for CS

Equivalence

Example of important equivalences

- DeMorgan's Laws:
- 1) $\neg (p \lor q) \iff \neg p \land \neg q$
- 2) $\neg (p \land q) \iff \neg p \lor \neg q$

Use the truth table to prove that the two propositions are logically equivalent

р	q	¬р	¬q	¬(p ∨ q)	¬p ^ ¬q
Т	T	F	F	F	F
Т	F	F	Т	F	F
F	Т	Т	F	F	F
F	F	Т	Т	Т	Т

CS 441 Discrete mathematics for CS

M. Hauskrecht

Equivalence

Example of important equivalences

- DeMorgan's Laws:
- 1) $\neg (p \lor q) \iff \neg p \land \neg q$
- 2) $\neg (p \land q) \iff \neg p \lor \neg q$

Use the truth table to prove that the two propositions are logically equivalent

р	q	¬р	¬q	¬(p ∨ q)	¬p ∧ ¬q
Т	Т	F	F	F	F
Т	F	F	Т	F	F
F	Т	Т	F	F	F
F	F	Т	Т	Т	Т

CS 441 Discrete mathematics for CS

Important logical equivalences

- Identity
 - $-\ p \wedge T <=>\ p$
 - $p \lor F \iff p$
- Domination
 - $p \lor T \iff T$
 - $p \wedge F \iff F$
- Idempotent
 - $p \lor p \iff p$
 - $p \wedge p \iff p$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Important logical equivalences

- Double negation
 - $\neg (\neg p) \iff p$
- Commutative
 - $p \lor q \iff q \lor p$
 - $p \wedge q \iff q \wedge p$
- Associative
 - $\ (p \lor q) \lor r <=> \ p \lor (q \lor r)$
 - $-(p \wedge q) \wedge r \iff p \wedge (q \wedge r)$

CS 441 Discrete mathematics for CS

Important logical equivalences

- Distributive
 - $\quad p \lor (q \land r) <=> (p \lor q) \land (p \lor r)$
 - $p \wedge (q \vee r) \iff (p \wedge q) \vee (p \wedge r)$
- De Morgan
 - $\neg (p \lor q) \iff \neg p \land \neg q$
 - $(p \land q) \iff \neg p \lor \neg q$
- Other useful equivalences
 - $-p \lor \neg p <=> T$
 - $-p \land \neg p <=> F$
 - $\mathbf{p} \rightarrow \mathbf{q} \iff (\neg \mathbf{p} \lor \mathbf{q})$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Using logical equivalences

• Equivalences can be used in proofs. A proposition or its part can be transformed using equivalences and some conclusion can be reached.

Example: Show that $(p \land q) \rightarrow p$ is a tautology.

• Proof: (we must show $(p \land q) \rightarrow p \iff T$)

$$(p \wedge q) \rightarrow p \iff \neg (p \wedge q) \vee p \qquad \qquad \textbf{Useful}$$

CS 441 Discrete mathematics for CS

• Equivalences can be used in proofs. A proposition or its part can be transformed using equivalences and some conclusion can be reached.

Example: Show that $(p \land q) \rightarrow p$ is a tautology.

• Proof: (we must show $(p \land q) \rightarrow p \iff T$)

$$(p \land q) \rightarrow p \iff \neg(p \land q) \lor p$$
 Useful
 $\iff [\neg p \lor \neg q] \lor p$ DeMorgan

CS 441 Discrete mathematics for CS

M. Hauskrecht

Using logical equivalences

• Equivalences can be used in proofs. A proposition or its part can be transformed using equivalences and some conclusion can be reached.

Example: Show that $(p \land q) \rightarrow p$ is a tautology.

• Proof: (we must show $(p \land q) \rightarrow p \iff T$)

$$\begin{array}{lll} (p \wedge q) \rightarrow p &<=> \neg (p \wedge q) \vee p & Useful \\ <=> [\neg p \vee \neg q] \vee p & DeMorgan \\ <=> [\neg q \vee \neg p] \vee p & Commutative \end{array}$$

CS 441 Discrete mathematics for CS

 Equivalences can be used in proofs. A proposition or its part can be transformed using equivalences and some conclusion can be reached.

Example: Show that $(p \land q) \rightarrow p$ is a tautology.

• Proof: (we must show $(p \land q) \rightarrow p \iff T$)

$$\begin{array}{lll} (p \wedge q) \rightarrow p & <=> \neg (p \wedge q) \vee p & Useful \\ <=> [\neg p \vee \neg q] \vee p & DeMorgan \\ <=> [\neg q \vee \neg p] \vee p & Commutative \\ <=> \neg q \vee [\neg p \vee p] & Associative \end{array}$$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Using logical equivalences

• Equivalences can be used in proofs. A proposition or its part can be transformed using equivalences and some conclusion can be reached.

Example: Show that $(p \land q) \rightarrow p$ is a tautology.

• Proof: (we must show $(p \land q) \rightarrow p \iff T$)

$$\begin{array}{lll} (p \wedge q) \rightarrow p &<=> \neg (p \wedge q) \vee p & Useful \\ <=> [\neg p \vee \neg q] \vee p & DeMorgan \\ <=> [\neg q \vee \neg p] \vee p & Commutative \\ <=> \neg q \vee [\neg p \vee p] & Associative \\ <=> \neg q \vee [T] & Useful \end{array}$$

CS 441 Discrete mathematics for CS

 Equivalences can be used in proofs. A proposition or its part can be transformed using equivalences and some conclusion can be reached.

Example: Show that $(p \land q) \rightarrow p$ is a tautology.

• Proof: (we must show $(p \land q) \rightarrow p \iff T$)

$$\begin{array}{lll} (p \wedge q) \rightarrow p & <=> \neg (p \wedge q) \vee p & Useful \\ <=> [\neg p \vee \neg q] \vee p & DeMorgan \\ <=> [\neg q \vee \neg p] \vee p & Commutative \\ <=> \neg q \vee [\neg p \vee p] & Associative \\ <=> \neg q \vee [T] & Useful \\ <=> T & Domination \\ \end{array}$$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Using logical equivalences

• Equivalences can be used in proofs. A proposition or its part can be transformed using equivalences and some conclusion can be reached.

Example: Show $(p \land q) \rightarrow p$ is a tautology.

• Alternative proof:

р	q	$p \wedge q$	$(p \land q) \rightarrow p$
Т	Т	Т	Т
Т	F	F	Т
F	Т	F	Т
F	F	F	Т

CS 441 Discrete mathematics for CS

- Equivalences can be used in proofs. A proposition or its part can be transformed using equivalences and some conclusion can be reached.
- Proofs that rely on logical equivalences can replace truth table approach
 - Why?
 - The truth table has 2ⁿ rows, where n is the number of elementary propositions
 - If n is large building the truth table may become infeasible

CS 441 Discrete mathematics for CS

M. Hauskrecht

Using logical equivalences

- Equivalences can be used in proofs. A proposition or its part can be transformed using equivalences and some conclusion can be reached.
- Example 2: Show $(p \rightarrow q) \iff (\neg q \rightarrow \neg p)$ Proof:
- $(p \rightarrow q) \iff (\neg q \rightarrow \neg p)$
- <=> ?

CS 441 Discrete mathematics for CS

- Equivalences can be used in proofs. A proposition or its part can be transformed using equivalences and some conclusion can be reached.
- Example 2: Show $(p \rightarrow q) \iff (\neg q \rightarrow \neg p)$ Proof:
- $(p \to q) \iff (\neg q \to \neg p)$
- $\langle = \rangle \neg (\neg q) \lor (\neg p)$ Useful
- $\langle = \rangle$ q \vee (\neg p) Double negation
- $\langle = \rangle \neg p \lor q$ Commutative
- $<=> p \rightarrow q$ Useful

End of proof

CS 441 Discrete mathematics for CS