CS 441 Discrete Mathematics for CS Lecture 23

Relations IV

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 441 Discrete mathematics for CS

M. Hauskrecht

Closures on relations

- Relations can have different properties:
 - reflexive,
 - symmetric
 - transitive
- Because of that we can have:
 - symmetric,
 - reflexive and
 - transitive

closures.

CS 441 Discrete mathematics for CS

Closures

Definition: Let R be a relation on a set A. A relation S on A with property P is called **the closure of R with respect to P** if S is a subset of every relation Q (S \subseteq Q) with property P that contains R (R \subseteq Q).

CS 441 Discrete mathematics for CS

M. Hauskrecht

Closures

Definition: Let R be a relation on a set A. A relation S on A with property P is called **the closure of R with respect to P** if S is a subset of every relation Q (S \subseteq Q) with property P that contains R (R \subseteq Q).

Example (a symmetric closure):

- Assume $R=\{(1,2),(1,3),(2,2)\}$ on $A=\{1,2,3\}$.
- What is the symmetric closure S of R?
- $S = \{(1,2),(1,3),(2,2)\} \cup \{(2,1),(3,1)\}$ = $\{(1,2),(1,3),(2,2),(2,1),(3,1)\}$

CS 441 Discrete mathematics for CS

Closures

Definition: Let R be a relation on a set A. A relation S on A with property P is called **the closure of R with respect to P** if S is a subset of every relation Q (S \subseteq Q) with property P that contains R (R \subseteq Q).

Example (transitive closure):

- Assume $R=\{(1,2), (2,2), (2,3)\}$ on $A=\{1,2,3\}$.
- Is R transitive? No.
- How to make it transitive?
- S = ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Closures

Definition: Let R be a relation on a set A. A relation S on A with property P is called **the closure of R with respect to P** if S is a subset of every relation Q (S \subseteq Q) with property P that contains R (R \subseteq Q).

Example (transitive closure):

- Assume $R=\{(1,2), (2,2), (2,3)\}$ on $A=\{1,2,3\}$.
- Is R transitive? No.
- How to make it transitive?
- $S = \{(1,2), (2,2), (2,3)\} \cup \{(1,3)\}$ = $\{(1,2), (2,2), (2,3), (1,3)\}$
- S is the transitive closure of R

CS 441 Discrete mathematics for CS

Transitive closure

We can represent the relation on the graph. Finding a transitive closure corresponds to finding all pairs of elements that are connected with a directed path (or digraph).

Example:

Assume $R=\{(1,2), (2,2), (2,3)\}$ on $A=\{1,2,3\}$. Transitive closure $S=\{(1,2), (2,2), (2,3), (1,3)\}$.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Connectivity relation

<u>Definition:</u> Let R be a relation on a set A. The **connectivity relation** R* consists of all pairs (a,b) such that there is a path (of any length, ie. 1 or 2 or 3 or ...) between a and b in R.

$$R^* = \bigcup_{k=1}^{\infty} R^k$$

Example:

- $A = \{1,2,3,4\}$
- $R = \{(1,2),(1,4),(2,3),(3,4)\}$
- $R^2 = \{(1,3),(2,4)\}$
- $R^3 = \{(1,4)\}$
- $R^4 = \emptyset$
- •
- $R^* = \{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}$

CS 441 Discrete mathematics for CS

Transitivity closure and connectivity relation

<u>Theorem:</u> The transitive closure of a relation R equals the connectivity relation R*.

Lemma: Let A be a set with n elements, and R a relation on A. If there is a path from a to b, then there exists a path of length < n in between (a,b). Consequently:

$$R^* = \bigcup_{k=1}^n R^k$$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Equivalence relation

Definition: A relation R on a set A is called an **equivalence relation** if it is **reflexive**, **symmetric and transitive**.

Example: Let $A = \{0,1,2,3,4,5,6\}$ and

• $R = \{(a,b) | a,b \in A, a \equiv b \mod 3\}$ (a is congruent to b modulo 3)

Congruencies:

- $0 \mod 3 = 0$ $1 \mod 3 = 1$ $2 \mod 3 = 2$ $3 \mod 3 = 0$
- $4 \mod 3 = 1$ $5 \mod 3 = 2$ $6 \mod 3 = 0$

Relation R has the following pairs:

- (0,0) (0,3), (3,0), (0,6), (6,0)
- (3,3), (3,6), (6,3), (6,6), (1,1), (1,4), (4,1), (4,4)
- (2,2), (2,5), (5,2), (5,5)

CS 441 Discrete mathematics for CS

Equivalence relation

Example:

- Suppose that R is the relation on the set of strings of English letters such that aRb if and only if l(a) = l(b), where l(x) is the length of the string x. Is R an equivalence relation?
- Is the relation reflexive?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Equivalence relation

- Relation R on A={0,1,2,3,4,5,6} has the following pairs:
 - (0,0)

- (0,3), (3,0), (0,6), (6,0)
- (3,3), (3,6) (6,3), (6,6)
- (1,1),(1,4),(4,1),(4,4)
- (2,2), (2,5), (5,2), (5,5)
- Is R reflexive? **Yes.**
- Is R symmetric? Yes.
- Is R transitive. Yes.

Then

• R is an equivalence relation.

CS 441 Discrete mathematics for CS

Equivalence relation

Example:

- Suppose that R is the relation on the set of strings of English letters such that aRb if and only if l(a) = l(b), where l(x) is the length of the string x. Is R an equivalence relation?
- Is the relation reflexive? Yes.
 - Because l(a) = l(a), it follows that aRa for all strings a.
- Is the relation symmetric? Yes.
 - Suppose that aRb. Since l(a) = l(b), l(b) = l(a) also holds and bRa.
- Is the relation transitive? Yes.
 - Suppose that aRb and bRc. Since l(a) = l(b), and l(b) = l(c), l(a) = l(a) also holds and aRc.
- Conclusion: R an equivalence relation

CS 441 Discrete mathematics for CS

M. Hauskrecht

Equivalence class

Definition: Let R be an equivalence relation on a set A. The set $\{x \in A \mid a R x\}$ is called **the equivalence class of a,** denoted by $[a]_R$ or simply [a] when there is only one relation R. If $b \in [a]$ then b is called **a representative of this equivalence class**.

Example:

- Assume $R = \{(a,b) \mid a \equiv b \mod 3\}$ for $A = \{0,1,2,3,4,5,6\}$
- Pick an element a = 0.
- $[0]_R = \{0,3,6\}$
- Element 1: $[1]_R = \{1,4\}$
- Element 2: $[2]_R = \{2,5\}$
- Element 3: $[3]_R = \{0,3,6\} = [0]_R = [6]_R$
- Element 4: $[4]_R = \{1,4\} = [1]_R$
- Element 5: $[5]_R = \{2,5\} = [2]_R$

CS 441 Discrete mathematics for CS

Equivalence class

Example:

• Assume $R = \{(a,b) \mid a \equiv b \mod 3\}$ for $A = \{0,1,2,3,4,5,6\}$

Three different equivalence classes all together:

- $[0]_R = [3]_R = [6]_R = \{0,3,6\}$
- $[1]_R = [4]_R = \{1,4\}$
- $[2]_R = [5]_R = \{2,5\}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Partition of a set S

Definition: Let S be a set. A collection of nonempty subsets of S A₁, A₂, ..., A_k is called a partition of S if:

$$A_1, A_2, ..., A_k$$
 is called **a partition of S** if:
• $A_i \cap A_j = \emptyset$, $i \neq j$ and $S = \bigcup_{i=1}^k A_i$

Example: Let $S = \{1, 2, 3, 4, 5, 6\}$ and

- $A_1 = \{0,3,6\}$ $A_2 = \{1,4\}$ $A_3 = \{2,5\}$
- Is A_1 , $A_{2,..}A_3$ a partition of S?

CS 441 Discrete mathematics for CS

Partition of a set S

Definition: Let S be a set. A collection of nonempty subsets of S

 $A_1, A_2, ..., A_k$ is called a partition of S if:

•
$$A_i \cap A_j = \emptyset$$
, $i \neq j$ and $S = \bigcup_{i=1}^k A_i$

Example: Let $S = \{1, 2, 3, 4, 5, 6\}$ and

- $A_1 = \{0,3,6\}$ $A_2 = \{1,4\}$ $A_3 = \{2,5\}$

- Is A_1 , A_2 , A_3 a partition of S? **Yes.**
- Give a partition of S?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Partition of a set S

Definition: Let S be a set. A collection of nonempty subsets of S

$$A_1, A_2, ..., A_k$$
 is called **a partition of S** if:
• $A_i \cap A_j = \emptyset$, $i \neq j$ and $S = \bigcup_{i=1}^k A_i$

Example: Let $S=\{1,2,3,4,5,6\}$ and

- $A_1 = \{0,3,6\}$ $A_2 = \{1,4\}$ $A_3 = \{2,5\}$
- Is A_1 , A_2 , A_3 a partition of S? **Yes.**
- Give a partition of S?
- {0,2,4,6} {1,3,5}
- {0} {1,2} {3,4,5} {6}

CS 441 Discrete mathematics for CS

Equivalence classes

Theorem: Let R be an equivalence relation on a set A. The union of all the equivalence classes of R is all of A, since an element a of A is in its own equivalence class $[a]_R$. In other words,

$$A = \bigcup_{a \in A} [a]_R$$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Equivalence class

Theorem: Let R be an **equivalence relation** on a set A. The following statements are equivalent:

- i) a R b
- ii) [a] = [b]
- iii) [a] \cap [b] $\neq \emptyset$.

CS 441 Discrete mathematics for CS

Equivalence class

Theorem: Let R be an **equivalence relation** on a set A. The following statements are equivalent:

- i) a R b
- ii) [a] = [b]
- iii) [a] \cap [b] $\neq \emptyset$.

Proof: (i) \rightarrow (ii)

- Suppose $\mathbf{a} \mathbf{R} \mathbf{b}$, i.e., $(\mathbf{a}, \mathbf{b}) \in \mathbf{R}$. Want to show $[\mathbf{a}] = [\mathbf{b}]$.
- Let $\mathbf{x} \in [\mathbf{a}] \to (\mathbf{a}, \mathbf{x}) \in \mathbf{R}$.
- Since R is symmetric $(b,a) \in R$.
- Since R is transitive, $(b,a) \in R$ and $(a,x) \in R \to (b,x) \in R$. Thus, $x \in [b]$.
- Let $\mathbf{x} \in [\mathbf{b}] \to (\mathbf{b}, \mathbf{x}) \in \mathbf{R}$.
- Since R is transitive, $(a,b) \in R$ and $(b,x) \in R \rightarrow (a,x) \in R$. Thus $x \in [a]$.
- Therefore [a] = [b].

CS 441 Discrete mathematics for CS

M. Hauskrecht

Equivalence class

Theorem: Let R be an **equivalence relation** on a set A. The following statements are equivalent:

- i) a R b
- ii) [a] = [b]
- iii) $[a] \cap [b] \neq \emptyset$.

Proof: (ii) \rightarrow (iii)

- Suppose [a] = [b]. Want to show [a] \cap [b] $\neq \emptyset$.
- Since R is reflexive, $a \in [a] \rightarrow [a] \neq \emptyset$ and the result follows.

CS 441 Discrete mathematics for CS

Equivalence class

Theorem: Let R be an **equivalence relation** on a set A. The following statements are equivalent:

- i) a R b
- ii) [a] = [b]
- iii) [a] \cap [b] $\neq \emptyset$.

Proof: (iii) \rightarrow (i)

- Suppose [a] \cap [b] $\neq \emptyset$, want to show a R b.
- $[a] \cap [b] \neq \emptyset \rightarrow x \in [a] \cap [b] \rightarrow x \in [a]$ and $x \in [b] \rightarrow (a,x)$ and $(b,x) \in R$.
- Since R is symmetric $(x,b) \in R$. By the transitivity of R $(a,x) \in R$ and $(x,b) \in R$ implies $(a,b) \in R \to a R b$.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Partial orderings

Definition: A relation *R* on a set S is called a *partial ordering*, or *partial order*, if it is reflexive, antisymmetric, and transitive. A set together with a partial ordering *R* is called a *partially ordered set*, or *poset*, and is denoted by (*S*, *R*). Members of *S* are called *elements* of the poset.

CS 441 Discrete mathematics for CS

Partial orderings

Definition: A relation *R* on a set S is called a *partial ordering*, or *partial order*, if it is reflexive, antisymmetric, and transitive. A set together with a partial ordering *R* is called a *partially ordered set*, or *poset*, and is denoted by (*S*, *R*). Members of *S* are called *elements* of the poset.

Example: Assume R denotes the "greater than or equal" relation (\geq) on the set $S=\{1,2,3,4,5\}$.

• Is the relation reflexive?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Partial orderings

Definition: A relation *R* on a set S is called a *partial ordering*, or *partial order*, if it is reflexive, antisymmetric, and transitive. A set together with a partial ordering *R* is called a *partially ordered set*, or *poset*, and is denoted by (*S*, *R*). Members of *S* are called *elements* of the poset.

Example: Assume R denotes the "greater than or equal" relation (\ge) on the set $S=\{1,2,3,4,5\}$.

- Is the relation reflexive? Yes
- Is it antisymmetric?

CS 441 Discrete mathematics for CS

Partial orderings

Definition: A relation *R* on a set S is called a *partial ordering*, or *partial order*, if it is reflexive, antisymmetric, and transitive. A set together with a partial ordering *R* is called a *partially ordered set*, or *poset*, and is denoted by (*S*, *R*). Members of *S* are called *elements* of the poset.

Example: Assume R denotes the "greater than or equal" relation (\geq) on the set $S=\{1,2,3,4,5\}$.

- Is the relation reflexive? Yes
- Is it antisymmetric? Yes
- Is it transitive?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Partial orderings

Definition: A relation *R* on a set S is called a *partial ordering*, or *partial order*, if it is reflexive, antisymmetric, and transitive. A set together with a partial ordering *R* is called a *partially ordered set*, or *poset*, and is denoted by (*S*, *R*). Members of *S* are called *elements* of the poset.

Example: Assume R denotes the "greater than or equal" relation (\ge) on the set $S=\{1,2,3,4,5\}$.

- Is the relation reflexive? Yes
- Is it antisymmetric? Yes
- Is it transitive? Yes
- Conclusion: R is a partial ordering.

CS 441 Discrete mathematics for CS

Partial orderings

Definition: A relation *R* on a set S is called a *partial ordering*, or *partial order*, if it is reflexive, antisymmetric, and transitive. A set together with a partial ordering *R* is called a *partially ordered set*, or *poset*, and is denoted by (*S*, *R*). Members of *S* are called *elements* of the poset.

Example: Assume R denotes the "greater than or equal" relation (\geq) on the set $S=\{1,2,3,4,5\}$.

- Is the relation reflexive? Yes
- Is it antisymmetric? Yes
- Is it transitive? Yes
- Conclusion: R is a partial ordering.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Partial orderings

Example: Assume R is the divisibility relation (I) on the set of integers $S=\{1,2,3,4,5,6\}$

- Is the relation reflexive? Yes
- Is it antisymmetric? Yes
- Is it transitive? Yes
- Conclusion: R is a partial ordering.

CS 441 Discrete mathematics for CS