CS 441 Discrete Mathematics for CS Lecture 22

Relations III.

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

Definition: Let R be a relation from a set A to a set B and S a relation from B to a set C. The **composite of R and S** is the relation consisting of the ordered pairs (a,c) where $a \in A$ and $c \in C$, and for which there is a $b \in B$ such that $(a,b) \in R$ and $(b,c) \in S$. We denote the composite of R and S by S o R.

Examples:

- Let $A = \{1,2,3\}$, $B = \{0,1,2\}$ and $C = \{a,b\}$.
- $R = \{(1,0), (1,2), (3,1), (3,2)\}$
- $S = \{(0,b),(1,a),(2,b)\}$
- S o R = ?

Definition: Let R be a relation from a set A to a set B and S a relation from B to a set C. The **composite of R and S** is the relation consisting of the ordered pairs (a,c) where $a \in A$ and $c \in C$, and for which there is a $b \in B$ such that $(a,b) \in R$ and $(b,c) \in S$. We denote the composite of R and S by S o R.

Definition: Let R be a relation from a set A to a set B and S a relation from B to a set C. The **composite of R and S** is the relation consisting of the ordered pairs (a,c) where $a \in A$ and $c \in C$, and for which there is a $b \in B$ such that $(a,b) \in R$ and $(b,c) \in S$. We denote the composite of R and S by S o R.

Example:

- Let $A = \{1,2,3\}$, $B = \{0,1,2\}$ and $C = \{a,b\}$.
- $R = \{(1,0), (1,2), (3,1), (3,2)\}$
- $S = \{(0,b),(1,a),(2,b)\}$
- S o R = $\{(1,b),(3,a),(3,b)\}$

Definition: Let R be a relation on a set A. The **powers** \mathbb{R}^n , n = 1,2,3,... is defined inductively by

• $\mathbf{R}^1 = \mathbf{R}$ and $\mathbf{R}^{n+1} = \mathbf{R}^n \mathbf{o} \mathbf{R}$.

Examples

- $R = \{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on $A = \{1,2,3,4\}$.
- $R^1 = R = \{(1,2),(2,3),(2,4),(3,3)\}$
- $R^2 = \{(1,3), (1,4), (2,3), (3,3)\}$
- R³ = {(1,3), (2,3), (3,3)}
- R 4 = {(1,3), (2,3), (3,3)}
- $R^k = R^3, k > 3.$

Representing binary relations with graphs

- We can graphically represent a binary relation R from A to B as follows:
 - if **a R b** then draw an arrow from a to b.

$$a \rightarrow b$$

Example:

- Relation R_{div} (from previous lectures) on $A=\{1,2,3,4\}$
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$

Representing relations on a set with digraphs

Definition: A **directed graph or digraph** consists of a set of vertices (or nodes) together with a set E of ordered pairs of elements of V called edges (or arcs). The vertex a is called the initial vertex of the edge (a,b) and vertex b is the terminal vertex of this edge. An edge of the form (a,a) is called **a loop**.

Example

• Relation $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$

Definition: Let R be a relation on a set A. The **powers Rⁿ**, n = 1,2,3,... is defined inductively by

• $\mathbf{R}^1 = \mathbf{R}$ and $\mathbf{R}^{n+1} = \mathbf{R}^n \mathbf{o} \mathbf{R}$.

Examples

• $R = \{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on $A = \{1,2,3,4\}$.

- R² = {(1,3), (1,4), (2,3), (3,3)}
- What does R ² represent?
- Paths of length 2
- R³ = {(1,3), (2,3), (3,3)} path of length 3

Transitive relation

Definition (transitive relation): A relation R on a set A is called **transitive** if

• $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R \text{ for all } a,b,c \in A.$

- Example 1:
- $R_{div} = \{(a b), if a | b\} \text{ on } A = \{1,2,3,4\}$
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- Is R_{div} transitive?
- Answer: Yes.

Connection to Rⁿ

Theorem: The relation R on a set A is transitive if and only if $R^n \subseteq R$ for n = 1,2,3,....

Proof: bi-conditional (if and only if)

(\leftarrow) Suppose $R^n \subseteq R$, for n = 1, 2, 3,

- Let $(a,b) \in R$ and $(b,c) \in R$
- by the definition of R o R, $(a,c) \in R$ o $R \subseteq R \rightarrow$
- R is transitive.

Connection to Rⁿ

Theorem: The relation R on a set A is transitive **if and only if** $R^n \subseteq R$ for n = 1,2,3,....

Proof: biconditional (if and only if)

 (\rightarrow) Suppose R is transitive. Show $R^n \subseteq R$, for n = 1, 2, 3, ...

- Let $P(n) : R^n \subseteq R$. Math induction.
- **Basis Step:** P(1) says $R^1 = R$ so, $R^1 \subseteq R$ is true.
- **Inductive Step:** show $P(n) \rightarrow P(n+1)$
- Want to show if $R^n \subseteq R$ then $R^{n+1} \subseteq R$.
- Let $(a,b) \in R^{n+1}$ then by the definition of $R^{n+1} = R^n$ o R there is an element $x \in A$ so that $(a,x) \in R$ and $(x,b) \in R^n \subseteq R$ (inductive hypothesis). In addition to $(a,x) \in R$ and $(x,b) \in R$, R is transitive; so $(a,b) \in R$.
- Therefore, $R^{n+1} \subseteq R$.

Closures of relations

- Let $R = \{(1,1),(1,2),(2,1),(3,2)\}$ on $A = \{1,2,3\}$.
- Is this relation reflexive?
- Answer: **No.** Why?
- (2,2) and (3,3) is not in R.
- The question is what is the minimal relation $S \supseteq R$ that is reflexive?
- How to make R reflexive with minimum number of additions?
- **Answer:** Add (2,2) and (3,3)
 - Then $S = \{(1,1),(1,2),(2,1),(3,2),(2,2),(3,3)\}$
 - $R \subset S$
 - The minimal set $S \supseteq R$ is called the reflexive closure of R

Reflexive closure

The set S is called the reflexive closure of R if it:

- contains R
- has reflexive property
- is contained in every reflexive relation Q that contains R (R \subseteq Q), that is $S \subseteq$ Q

Closures on relations

- Relations can have different properties:
 - reflexive,
 - symmetric
 - transitive
- Because of that we can have:
 - symmetric,
 - reflexive and
 - transitive

closures.

Closures

Definition: Let R be a relation on a set A. A relation S on A with property P is called **the closure of R with respect to P** if S is a subset of every relation Q ($S \subseteq Q$) with property P that contains R ($R \subseteq Q$).

Closures

Definition: Let R be a relation on a set A. A relation S on A with property P is called **the closure of R with respect to P** if S is a subset of every relation Q ($S \subseteq Q$) with property P that contains R ($R \subseteq Q$).

Example (a symmetric closure):

- Assume $R = \{(1,2),(1,3),(2,2)\}$ on $A = \{1,2,3\}$.
- What is the symmetric closure S of R?
- $S = \{(1,2),(1,3),(2,2)\} \cup \{(2,1),(3,1)\}$ = $\{(1,2),(1,3),(2,2),(2,1),(3,1)\}$

Closures

Definition: Let R be a relation on a set A. A relation S on A with property P is called **the closure of R with respect to P** if S is a subset of every relation Q ($S \subseteq Q$) with property P that contains R ($R \subseteq Q$).

Example (transitive closure):

- Assume $R=\{(1,2), (2,2), (2,3)\}$ on $A=\{1,2,3\}$.
- Is R transitive? No.
- How to make it transitive?
- $S = \{(1,2), (2,2), (2,3)\} \cup \{(1,3)\}$ = $\{(1,2), (2,2), (2,3), (1,3)\}$
- S is the transitive closure of R

We can represent the relation on the graph. Finding a transitive closure corresponds to finding all pairs of elements that are connected with a directed path (or digraph).

Example:

Assume $R=\{(1,2), (2,2), (2,3)\}$ on $A=\{1,2,3\}$.

Transitive closure $S = \{(1,2), (2,2), (2,3), (1,3)\}.$

We can represent the relation on the graph. Finding a transitive closure corresponds to finding all pairs of elements that are connected with a directed path (or digraph).

Example:

Assume $R=\{(1,2), (2,2), (2,3)\}$ on $A=\{1,2,3\}$.

Transitive closure $S = \{(1,2), (2,2), (2,3), (1,3)\}.$

We can represent the relation on the graph. Finding a transitive closure corresponds to finding all pairs of elements that are connected with a directed path (or digraph).

Example:

Assume $R = \{(1,2), (2,2), (2,3)\}$ on $A = \{1,2,3\}$.

Transitive closure $S = \{(1,2), (2,2), (2,3), (1,3)\}.$

Theorem: Let R be a relation on a set A. There is a path of length n from a to b if and only if $(a,b) \in R^n$.

Proof (math induction):

Path of length 1

Theorem: Let R be a relation on a set A. There is a path of length n from a to b if and only if $(a,b) \in R^n$.

Proof (math induction):

- **P(1):** There is a path of length 1 from a to b if and only if $(a,b) \in R^1$, by the definition of R.
- Show $P(n) \rightarrow P(n+1)$: Assume there is a path of length n from a to b if and only if $(a,b) \in \mathbb{R}^n \rightarrow$ there is a path of length n+1 from a to b if and only if $(a,b) \in \mathbb{R}^{n+1}$.
- There is a path of length n+1 from a to b if and only if there exists an $x \in A$, such that $(a,x) \in R$ (a path of length 1) and $(x,b) \in R^n$ is a path of length n from x to b.

• $(x,b) \in \mathbb{R}^n$ holds due to P(n). Therefore, there is a path of length n+1 from a to b. This also implies that $(a,b) \in \mathbb{R}^{n+1}$.

Connectivity relation

Definition: Let R be a relation on a set A. The **connectivity** relation R* consists of all pairs (a,b) such that there is a path (of any length, ie. 1 or 2 or 3 or ...) between a and b in R.

$$R^* = \bigcup_{k=1}^{\infty} R^k$$

Example:

•
$$A = \{1,2,3,4\}$$

•
$$R = \{(1,2),(1,4),(2,3),(3,4)\}$$

•
$$R^2 = \{(1,3),(2,4)\}$$

•
$$R^3 = \{(1,4)\}$$

•
$$\mathbf{R}^4 = \emptyset$$

•

•
$$R^* = \{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}$$

Transitivity closure and connectivity relation

Theorem: The transitive closure of a relation R equals the connectivity relation R*.

Based on the following Lemma.

Lemma 1: Let A be a set with n elements, and R a relation on A. If there is a path from a to b, then there exists a path of length < n in between (a,b). Consequently:

$$R^* = \bigcup_{k=1}^n R^k$$

Connectivity

Lemma 1: Let A be a set with n elements, and R a relation on A. If there is a path from a to b, then there exists a path of length < n in between (a,b). Consequently:

$$R^* = \bigcup_{k=1}^n R^k$$

Proof (intuition):

• There are at most n different elements we can visit on a path if the path does not have loops

$$x0=a$$
 $x1$ $x2$ $xm=b$

• Loops may increase the length but the same node is visited more than once

$$x0=a$$
 $x1$ $x2$ $xm=b$

Connectivity

Lemma 1: Let A be a set with n elements, and R a relation on A. If there is a path from a to b, then there exists a path of length < n in between (a,b). Consequently:

$$R^* = \bigcup_{k=1}^n R^k$$

Proof (intuition):

• There are at most n different elements we can visit on a path if the path does not have loops

$$x0=a$$
 $x1$ $x2$ $xm=b$

• Loops may increase the length but the same node is visited more than once

$$x0=a$$
 $x1$ $x2$ $xm=b$