Relations II

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square
Course administration

- Homework assignment 9
 - due on Monday, April 8, 2013

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs441/
Cartesian product (review)

- Let $A=\{a_1, a_2, \ldots a_k\}$ and $B=\{b_1, b_2, \ldots b_m\}$.
- **The Cartesian product** $A \times B$ is defined by a set of pairs
 \{(a_1 b_1), (a_1, b_2), \ldots (a_1, b_m), \ldots, (a_k, b_m)\}.

Example:
Let $A=\{a, b, c\}$ and $B=\{1, 2, 3\}$. What is $A \times B$?

$$A \times B = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$$
Binary relation

Definition: Let A and B be sets. A **binary relation from A to B** is a subset of a Cartesian product $A \times B$.

Example: Let $A=\{a, b, c\}$ and $B=\{1, 2, 3\}$.

- $R=\{(a,1),(b,2),(c,2)\}$ is an example of a relation from A to B.
Representing binary relations

- We can graphically represent a binary relation R as follows:
 - if $a \, R \, b$ then draw an arrow from a to b.

$$a \rightarrow b$$

Example:
- Let $A = \{0, 1, 2\}$, $B = \{u, v\}$ and $R = \{(0,u), (0,v), (1,v), (2,u)\}$
- Note: $R \subseteq A \times B$.
- **Graph:**

```
  2
 /|
/  |
0  u
 /|
 /  |
/   |
1  v
```
Representing binary relations

- We can represent a binary relation R by a **table** showing (marking) the ordered pairs of R.

Example:
- Let $A = \{0, 1, 2\}$, $B = \{u, v\}$ and $R = \{ (0,u), (0,v), (1,v), (2,u) \}$
- Table:

<table>
<thead>
<tr>
<th>R</th>
<th>u</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

 or

<table>
<thead>
<tr>
<th>R</th>
<th>u</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Properties of relations

Properties of relations on A:

- Reflexive
- Irreflexive
- Symmetric
- Anti-symmetric
Reflexive relation

• $R_{\text{div}} = \{(a, b), \text{ if } a | b\}$ on $A = \{1,2,3,4\}$
• $R_{\text{div}} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$

\[
\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}
\]

• A relation R is reflexive if and only if MR has 1 in every position on its main diagonal.
Irreflexive relation

Irreflexive relation

• R_\neq on $A=\{1,2,3,4\}$, such that $a \, R_\neq \, b$ if and only if $a \neq b$.

• $R_\neq=\{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\}$

\[
\begin{array}{cccc}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
\end{array}
\]

\[MR = \begin{array}{cccc}
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
\end{array}\]

• **A relation R is irreflexive** if and only if MR has 0 in every position on its main diagonal.
Symmetric relation

Symmetric relation:

- \(R \neq \) on \(A=\{1,2,3,4\} \), such that \(a R \neq b \) if and only if \(a \neq b \).
- \(R=\{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\} \)

\[
\begin{array}{cccc}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
\end{array}
\]

\(MR = \)

- A relation \(R \) is symmetric if and only if \(m_{ij} = m_{ji} \) for all \(i,j \).
Antisymmetric relations

Antisymmetric relation

- relation \(R_{\text{fun}} = \{(1,2),(2,2),(3,3)\} \)

\[
\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\]

- A relation is **antisymmetric** if and only if \(m_{ij} = 1 \rightarrow m_{ji} = 0 \) for \(i \neq j \).
Properties of relations

Definition (transitive relation): A relation R on a set A is called transitive if

- $[(a,b) \in R \text{ and } (b,c) \in R] \implies (a,c) \in R$ for all $a, b, c \in A$.

Example 2:

- $R \neq$ on $A=\{1,2,3,4\}$, such that $a \mathcal{R} \neq b$ if and only if $a \neq b$.
- $R \neq =\{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\}$
- **Is $R \neq$ transitive?**
- **Answer:** No. It is not transitive since $(1,2) \in R$ and $(2,1) \in R$ but $(1,1)$ is not an element of R.
Properties of relations

Definition (transitive relation): A relation R on a set A is called transitive if

- $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R \text{ for all } a, b, c \in A.$

Example 3:
- Relation R_{fun} on $A = \{1,2,3,4\}$ defined as:
 - $R_{\text{fun}} = \{(1,2),(2,2),(3,3)\}.$
- Is R_{fun} transitive?
- Answer: Yes. It is transitive.
Combining relations

Definition: Let A and B be sets. A *binary relation from A to B* is a subset of a Cartesian product $A \times B$.

- Let $R \subseteq A \times B$ means R is a set of ordered pairs of the form (a,b) where $a \in A$ and $b \in B$.

Combining Relations

- Relations are sets \rightarrow combinations via set operations
- Set operations of: union, intersection, difference and symmetric difference.
Combining relations

Example:

• Let $A = \{1,2,3\}$ and $B = \{u,v\}$ and
• $R_1 = \{(1,u), (2,u), (2,v), (3,u)\}$
• $R_2 = \{(1,v),(3,u),(3,v)\}$

What is:

• $R_1 \cup R_2 = \{(1,u),(1,v),(2,u),(2,v),(3,u),(3,v)\}$
• $R_1 \cap R_2 = \{(3,u)\}$
• $R_1 - R_2 = \{(1,u),(2,u),(2,v)\}$
• $R_2 - R_1 = \{(1,v),(3,v)\}$
Combination of relations: implementation

Definition. The *join*, denoted by \lor, of two m-by-n matrices (a_{ij}) and (b_{ij}) of 0s and 1s is an m-by-n matrix (m_{ij}) where

- $m_{ij} = a_{ij} \lor b_{ij}$ for all i,j

= pairwise or (disjunction)

Example:
- Let $A = \{1,2,3\}$ and $B = \{u,v\}$ and
- $R1 = \{(1,u), (2,u), (2,v), (3,u)\}$
- $R2 = \{(1,v),(3,u),(3,v)\}$

<table>
<thead>
<tr>
<th>$M(R1 \lor R2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1</td>
</tr>
<tr>
<td>1 1 0 0</td>
</tr>
<tr>
<td>1 0 1 1</td>
</tr>
</tbody>
</table>

$MR1 = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$

$MR2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$
Combination of relations: implementation

Definition. The **meet**, denoted by \land, of two m-by-n matrices (a_{ij}) and (b_{ij}) of 0s and 1s is an m-by-n matrix (m_{ij}) where

- $m_{ij} = a_{ij} \land b_{ij}$ for all i,j
- = pairwise and (conjunction)

Example:

- Let $A = \{1,2,3\}$ and $B = \{u,v\}$ and
- $R_1 = \{(1,u), (2,u), (2,v), (3,u)\}$
- $R_2 = \{(1,v),(3,u),(3,v)\}$

<table>
<thead>
<tr>
<th></th>
<th>R_1</th>
<th>R_2</th>
<th>$R_1 \land R_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1 0 1 1
Composite of relations

Definition: Let R be a relation from a set A to a set B and S a relation from B to a set C. The **composite of R and S** is the relation consisting of the ordered pairs (a,c) where $a \in A$ and $c \in C$, and for which there is a $b \in B$ such that $(a,b) \in R$ and $(b,c) \in S$. We denote the composite of R and S by $S \circ R$.

Examples:

- Let $A = \{1,2,3\}$, $B = \{0,1,2\}$ and $C = \{a,b\}$.
- $R = \{(1,0), (1,2), (3,1),(3,2)\}$
- $S = \{(0,b),(1,a),(2,b)\}$
- $S \circ R = \{(1,b),(3,a),(3,b)\}$
Implementation of composite

Definition. The **Boolean product**, denoted by \odot, of an m-by-n matrix (a_{ij}) and n-by-p matrix (b_{jk}) of 0s and 1s is an m-by-p matrix (m_{ik}) where

- $m_{ik} = 1$, if $a_{ij} = 1$ and $b_{jk} = 1$ for some $k=1,2,...,n$
- 0, otherwise

Examples:

- Let $A = \{1,2,3\}$, $B = \{0,1,2\}$ and $C = \{a,b\}$.
- $R = \{(1,0), (1,2), (3,1),(3,2)\}$
- $S = \{(0,b),(1,a),(2,b)\}$

- $S \circ R = \{(1,b),(3,a),(3,b)\}$
Implementation of composite

Examples:

- Let $A = \{1, 2\}, \{1, 2, 3\}$ $C = \{a, b\}$
- $R = \{(1, 2), (1, 3), (2, 1)\}$ is a relation from A to B
- $S = \{(1, a), (3, b), (3, a)\}$ is a relation from B to C.
- $S \circ R = \{(1, b), (1, a), (2, a)\}$

\[
\begin{array}{ccc}
0 & 1 & 1 \\
M_R = 1 & 0 & 0 \\
\end{array}
\quad
\begin{array}{ccc}
1 & 0 \\
M_S = 0 & 0 \\
\end{array}
\quad
\begin{array}{ccc}
x & x \\
M_R \odot M_S = x & x \\
\end{array}
\quad
\begin{array}{ccc}
x & x \\
\end{array}
\]
Implementation of composite

Examples:

• Let $A = \{1,2\}, \{1,2,3\}$ $C = \{a,b\}$
• $R = \{(1,2),(1,3),(2,1)\}$ is a relation from A to B
• $S = \{(1,a),(3,b),(3,a)\}$ is a relation from B to C.
• $S \circ R = \{(1,b),(1,a),(2,a)\}$

\[
\begin{bmatrix}
0 & 1 & 1 \\
\end{bmatrix}
\]

\[
M_R = \begin{bmatrix}
1 & 0 & 0 \\
\end{bmatrix}
\]

\[
M_S = \begin{bmatrix}
0 & 0 \\
1 & 1 \\
\end{bmatrix}
\]

\[
M_R \odot M_S = \begin{bmatrix}
1 & x \\
x & x \\
\end{bmatrix}
\]
Implementation of composite

Examples:

• Let $A = \{1,2\}, \{1,2,3\}$ $C = \{a,b\}$
• $R = \{(1,2),(1,3),(2,1)\}$ is a relation from A to B
• $S = \{(1,a),(3,b),(3,a)\}$ is a relation from B to $C.$
• $S \circ R = \{(1,b),(1,a),(2,a)\}$

\[
M_R = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \quad M_S = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad M_R \odot M_S = \begin{bmatrix} 1 & 1 \\ x & x \end{bmatrix}
\]
Implementation of composite

Examples:

• Let \(A = \{1,2\}, \{1,2,3\} \) \(C = \{a,b\} \)
• \(R = \{(1,2),(1,3),(2,1)\} \) is a relation from \(A \) to \(B \)
• \(S = \{(1,a),(3,b),(3,a)\} \) is a relation from \(B \) to \(C \).
• \(S \circ R = \{(1,b),(1,a),(2,a)\} \)

\[
M_R = \begin{bmatrix}
0 & 1 & 1 \\
1 & 0 & 0
\end{bmatrix} \quad M_S = \begin{bmatrix}
1 & 0 \\
0 & 0 \\
1 & 1
\end{bmatrix}
\]

\[
M_R \circ M_S = \begin{bmatrix}
1 & 1 \\
1 & x
\end{bmatrix}
\]
Implementation of composite

Examples:

• Let $A = \{1,2\}, \{1,2,3\}$ $C = \{a,b\}$
• $R = \{(1,2),(1,3),(2,1)\}$ is a relation from A to B
• $S = \{(1,a),(3,b),(3,a)\}$ is a relation from B to C.
• $S \circ R = \{(1,b),(1,a),(2,a)\}$

\[
M_R = \begin{bmatrix}
0 & 1 & 1 \\
1 & 0 & 0 \\
\end{bmatrix}, \quad M_S = \begin{bmatrix}
1 & 0 \\
0 & 0 \\
1 & 1 \\
\end{bmatrix}
\]

\[
M_R \odot M_S = \begin{bmatrix}
1 & 1 \\
1 & 0 \\
\end{bmatrix}, \quad M_S \odot R = ?
\]
Implementation of composite

Examples:
• Let \(A = \{1,2\}, \{1,2,3\} \) \(C = \{a,b\} \)
• \(R = \{(1,2),(1,3),(2,1)\} \) is a relation from \(A \) to \(B \)
• \(S = \{(1,a),(3,b),(3,a)\} \) is a relation from \(B \) to \(C \).
• \(S \circ R = \{(1,b),(1,a),(2,a)\} \)

\[
\begin{bmatrix}
0 & 1 & 1 & 1 & 0
\end{bmatrix}
\]

\[
M_R = \begin{bmatrix}
1 & 0 & 0 & M_S & = & 0 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 1
\end{bmatrix}
\]

\[
M_R \odot M_S = \begin{bmatrix}
1 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0
\end{bmatrix}
\]

\[
M_S \circ R = \begin{bmatrix}
1 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0
\end{bmatrix}
\]

Composite of relations

Definition: Let R be a relation on a set A. The powers R^n, $n = 1, 2, 3, \ldots$ is defined inductively by

- $R^1 = R$ and $R^{n+1} = R^n \circ R$.

Examples

- $R = \{(1,2),(2,3),(2,4), (3,3)\}$ is a relation on $A = \{1,2,3,4\}$.
- $R^1 = R = \{(1,2),(2,3),(2,4), (3,3)\}$
- $R^2 = \{(1,3), (1,4), (2,3), (3,3)\}$
- $R^3 = \{(1,3), (2,3), (3,3)\}$
- $R^4 = \{(1,3), (2,3), (3,3)\}$
- $R^k = R^3$, $k > 3$.