CS 441 Discrete Mathematics for CS Lecture 21

Relations II

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

Course administration

- Homework assignment 9
 - due on Monday, April 8, 2013

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs441/

Cartesian product (review)

- Let $A = \{a_1, a_2, ...a_k\}$ and $B = \{b_1, b_2, ...b_m\}$.
- The Cartesian product A x B is defined by a set of pairs $\{(a_1 b_1), (a_1, b_2), \dots (a_1, b_m), \dots, (a_k, b_m)\}.$

Example:

Let $A = \{a,b,c\}$ and $B = \{1 \ 2 \ 3\}$. What is AxB?

$$AxB = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$$

Binary relation

Definition: Let A and B be sets. A binary relation from A to B is a subset of a Cartesian product A x B.

Example: Let $A = \{a,b,c\}$ and $B = \{1,2,3\}$.

• $R=\{(a,1),(b,2),(c,2)\}$ is an example of a relation from A to B.

Representing binary relations

- We can graphically represent a binary relation R as follows:
 - if **a R b** then draw an arrow from a to b.

$$a \rightarrow b$$

- Let $A = \{0, 1, 2\}, B = \{u,v\}$ and $R = \{(0,u), (0,v), (1,v), (2,u)\}$
- Note: $R \subseteq A \times B$.
- Graph:

Representing binary relations

• We can represent a binary relation R by a **table** showing (marking) the ordered pairs of R.

- Let $A = \{0, 1, 2\}, B = \{u,v\} \text{ and } R = \{(0,u), (0,v), (1,v), (2,u)\}$
- Table:

R	111	V	or			
	<u>u</u>			<u>R</u>	u	V
0	X	X			1	
1		X		1	0	1
2	X			2	1	0

Properties of relations

Properties of relations on A:

- Reflexive
- Irreflexive
- Symmetric
- Anti-symmetric

Reflexive relation

Reflexive relation

- $R_{div} = \{(a b), if a | b\} \text{ on } A = \{1,2,3,4\}$
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$

• A relation R is reflexive if and only if MR has 1 in every position on its main diagonal.

Irreflexive relation

Irreflexive relation

- \mathbf{R}_{\neq} on $\mathbf{A} = \{1,2,3,4\}$, such that $\mathbf{a} \ \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathbf{a} \neq \mathbf{b}$.
- $\mathbf{R}_{\neq} = \{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\}$

• A relation R is irreflexive if and only if MR has 0 in every position on its main diagonal.

Symmetric relation

Symmetric relation:

- \mathbf{R}_{\neq} on $\mathbf{A} = \{1,2,3,4\}$, such that $\mathbf{a} \ \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathbf{a} \neq \mathbf{b}$.
- $\mathbf{R}_{\neq} = \{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\}$

A relation R is symmetric if and only if m_{ij} = m_{ji} for all i,j.

Antisymmetric relations

Antisymmetric relation

• relation $R_{\text{fun}} = \{(1,2),(2,2),(3,3)\}$

• A relation is **antisymmetric** if and only if $m_{ij} = 1 \rightarrow m_{ji} = 0$ for $i \neq j$.

Properties of relations

Definition (transitive relation): A relation R on a set A is called **transitive** if

- $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R \text{ for all } a,b,c \in A.$
- Example 2:
- \mathbf{R}_{\neq} on $\mathbf{A} = \{1,2,3,4\}$, such that $\mathbf{a} \ \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathbf{a} \neq \mathbf{b}$.
- $\mathbf{R}_{\neq} = \{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\}$
- Is R_≠ transitive?
- **Answer:** No. It is not transitive since $(1,2) \in R$ and $(2,1) \in R$ but (1,1) is not an element of R.

Properties of relations

Definition (transitive relation): A relation R on a set A is called **transitive** if

- $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R \text{ for all } a,b,c \in A.$
- Example 3:
- Relation R_{fun} on $A = \{1,2,3,4\}$ defined as:
 - $R_{\text{fun}} = \{(1,2),(2,2),(3,3)\}.$
- Is R_{fun} transitive?
- Answer: Yes. It is transitive.

Combining relations

<u>Definition:</u> Let A and B be sets. A <u>binary relation from A to B</u> is a subset of a Cartesian product A x B.

• Let $R \subseteq A \times B$ means R is a set of ordered pairs of the form (a,b) where $a \in A$ and $b \in B$.

Combining Relations

- Relations are sets → combinations via set operations
- Set operations of: union, intersection, difference and symmetric difference.

Combining relations

Example:

- Let $A = \{1,2,3\}$ and $B = \{u,v\}$ and
- $R1 = \{(1,u), (2,u), (2,v), (3,u)\}$
- $R2 = \{(1,v),(3,u),(3,v)\}$

What is:

- R1 \cup R2 = {(1,u),(1,v),(2,u),(2,v),(3,u),(3,v)}
- $R1 \cap R2 = \{(3,u)\}$
- R1 R2 = $\{(1,u),(2,u),(2,v)\}$
- R2 R1 = $\{(1,v),(3,v)\}$

Combination of relations: implementation

Definition. The **join**, denoted by \vee , of two m-by-n matrices (a_{ij}) and (b_{ij}) of 0s and 1s is an m-by-n matrix (m_{ij}) where

- $m_{ij} = a_{ij} \vee b_{ij}$ for all i,j
- = pairwise or (disjunction)
- Example:
- Let $A = \{1,2,3\}$ and $B = \{u,v\}$ and
- $R1 = \{(1,u), (2,u), (2,v), (3,u)\}$
- $R2 = \{(1,v),(3,u),(3,v)\}$

• MR1 = 1 0 MR2 = 0 1 M(R1
$$\vee$$
 R2)= 1 1 1 1 0 0 0 1 1 1 1

Combination of relations: implementation

Definition. The **meet**, denoted by \wedge , of two m-by-n matrices (a_{ij}) and (b_{ij}) of 0s and 1s is an m-by-n matrix (m_{ij}) where

- $m_{ij} = a_{ij} \wedge b_{ij}$ for all i,j = pairwise and (conjunction)
- Example:
- Let $A = \{1,2,3\}$ and $B = \{u,v\}$ and
- $R1 = \{(1,u), (2,u), (2,v), (3,u)\}$
- $R2 = \{(1,v),(3,u),(3,v)\}$

• MR1 = 1 0 MR2 = 0 1 MR1
$$\land$$
 MR2 = 0 0 1 1 1 0 1 1 0

Composite of relations

Definition: Let R be a relation from a set A to a set B and S a relation from B to a set C. The **composite of R and S** is the relation consisting of the ordered pairs (a,c) where $a \in A$ and $c \in C$, and for which there is a $b \in B$ such that $(a,b) \in R$ and $(b,c) \in S$. We denote the composite of R and S by S o R.

- Let $A = \{1,2,3\}$, $B = \{0,1,2\}$ and $C = \{a,b\}$.
- $R = \{(1,0), (1,2), (3,1), (3,2)\}$
- $S = \{(0,b),(1,a),(2,b)\}$
- S o R = $\{(1,b),(3,a),(3,b)\}$

Definition. The **Boolean product**, **denoted by \Theta**, of an m-by-n matrix (a_{ij}) and n-by-p matrix (b_{jk}) of 0s and 1s is an m-by-p matrix (m_{ik}) where

• $m_{ik} = 1$, if $a_{ij} = 1$ and $b_{jk} = 1$ for some k=1,2,...,n0, otherwise

- Let $A = \{1,2,3\}$, $B = \{0,1,2\}$ and $C = \{a,b\}$.
- $R = \{(1,0), (1,2), (3,1), (3,2)\}$
- $S = \{(0,b),(1,a),(2,b)\}$
- S o R = $\{(1,b),(3,a),(3,b)\}$

Examples:

- Let $A = \{1,2\}, \{1,2,3\} C = \{a,b\}$
- $R = \{(1,2),(1,3),(2,1)\}$ is a relation from A to B
- $S = \{(1,a),(3,b),(3,a)\}$ is a relation from B to C.
- S O R = $\{(1,b),(1,a),(2,a)\}$

$$\mathbf{M}_{\mathsf{R}} = 1 \qquad 0$$

0

 $M_{s} =$

$$M_R \odot M_S$$

X

X

X

X

- Let $A = \{1,2\}, \{1,2,3\} C = \{a,b\}$
- $R = \{(1,2),(1,3),(2,1)\}$ is a relation from A to B
- $S = \{(1,a),(3,b),(3,a)\}$ is a relation from B to C.
- S O R = $\{(1,b),(1,a),(2,a)\}$

~ ~		((-) -) , (-	- , - , , , (— ,	••/)			
	0	1	1			1	0
$M_R =$	1	0	0	${ m M_S}$	=	0	0
						1 0 1	1
N (N /		4				

$$M_{R} \odot M_{S} = 1 \qquad x \qquad x \qquad x$$

Examples:

- Let $A = \{1,2\}, \{1,2,3\} C = \{a,b\}$
- $R = \{(1,2),(1,3),(2,1)\}$ is a relation from A to B
- $S = \{(1,a),(3,b),(3,a)\}$ is a relation from B to C.
- S O R = $\{(1,b),(1,a),(2,a)\}$

X

- Let $A = \{1,2\}, \{1,2,3\} C = \{a,b\}$
- $R = \{(1,2),(1,3),(2,1)\}$ is a relation from A to B
- $S = \{(1,a),(3,b),(3,a)\}$ is a relation from B to C.
- S O R = $\{(1,b),(1,a),(2,a)\}$

- Let $A = \{1,2\}, \{1,2,3\} C = \{a,b\}$
- $R = \{(1,2),(1,3),(2,1)\}$ is a relation from A to B
- $S = \{(1,a),(3,b),(3,a)\}$ is a relation from B to C.
- S O R = $\{(1,b),(1,a),(2,a)\}$

$$\mathbf{M}_{R} = \begin{bmatrix} 0 & 1 & 1 & & & & 1 & & 0 \\ 1 & 0 & 0 & & & \mathbf{M}_{S} & = & 0 & & 0 \\ & & & & & 1 & & 1 \end{bmatrix}$$

$$\mathbf{M}_{\mathbf{R}} \odot \mathbf{M}_{\mathbf{S}} = 1 \qquad 1$$

$$M_{S \cap R} = ?$$

- Let $A = \{1,2\}, \{1,2,3\} C = \{a,b\}$
- $R = \{(1,2),(1,3),(2,1)\}$ is a relation from A to B
- $S = \{(1,a),(3,b),(3,a)\}$ is a relation from B to C.
- S O R = $\{(1,b),(1,a),(2,a)\}$

$$M_{S \cap R} = 1 \qquad 1 \qquad 1$$

Composite of relations

Definition: Let R be a relation on a set A. The **powers** \mathbb{R}^n , n = 1,2,3,... is defined inductively by

• $\mathbf{R}^1 = \mathbf{R}$ and $\mathbf{R}^{n+1} = \mathbf{R}^n \mathbf{O} \mathbf{R}$.

- $R = \{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on $A = \{1,2,3,4\}$.
- $R^1 = R = \{(1,2),(2,3),(2,4),(3,3)\}$
- $R^2 = \{(1,3), (1,4), (2,3), (3,3)\}$
- R³ = {(1,3), (2,3), (3,3)}
- $R^4 = \{(1,3), (2,3), (3,3)\}$
- $R^k = R^3, k > 3.$