CS 441 Discrete Mathematics for CS Lecture 20

Relations

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 441 Discrete mathematics for CS

M. Hauskrecht

Cartesian product (review)

Example:

Let
$$A=\{a,b,c\}$$
 and $B=\{1\ 2\ 3\}$. What is AxB?
AxB = $\{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$

CS 441 Discrete mathematics for CS

Cartesian product (review)

Let $A = \{a_1, a_2, ...a_k\}$ and $B = \{b_1, b_2, ...b_m\}$.

The Cartesian product A x B is defined by a set of pairs $\{(a_1, b_1), (a_1, b_2), \dots (a_1, b_m), \dots, (a_k, b_m)\}.$

Example:

Let
$$A=\{a,b,c\}$$
 and $B=\{1\ 2\ 3\}$. What is AxB?
AxB = $\{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$

CS 441 Discrete mathematics for C

M. Hauskrecht

Binary relation

<u>Definition:</u> Let A and B be two sets. A **binary relation from A to B** is a subset of a Cartesian product A x B.

- Let $R \subseteq A \times B$ means R is a set of ordered pairs of the form (a,b) where $a \in A$ and $b \in B$.
- We use the notation a R b to denote (a,b) ∈ R and a k b to denote (a,b) ∉ R. If a R b, we say a is related to b by R.

Example: Let $A = \{a,b,c\}$ and $B = \{1,2,3\}$.

- Is $R = \{(a,1),(b,2),(c,2)\}$ a relation from A to B? Yes.
- Is $Q=\{(1,a),(2,b)\}$ a relation from A to B? **No.**
- Is $P=\{(a,a),(b,c),(b,a)\}$ a relation from A to A?

CS 441 Discrete mathematics for CS

Binary relation

<u>Definition:</u> Let A and B be two sets. A **binary relation from A to B** is a subset of a Cartesian product A x B.

- Let $R \subseteq A \times B$ means R is a set of ordered pairs of the form (a,b) where $a \in A$ and $b \in B$.
- We use the notation a R b to denote (a,b) ∈ R and a K b to denote (a,b) ∉ R. If a R b, we say a is related to b by R.

Example: Let $A = \{a,b,c\}$ and $B = \{1,2,3\}$.

- Is $R=\{(a,1),(b,2),(c,2)\}$ a relation from A to B? Yes.
- Is $Q=\{(1,a),(2,b)\}$ a relation from A to B? **No.**
- Is $P=\{(a,a),(b,c),(b,a)\}$ a relation from A to A? Yes

CS 441 Discrete mathematics for CS

M. Hauskrecht

Representing binary relations

- We can graphically represent a binary relation R as follows:
 - if **a R b** then draw an arrow from a to b.

$$a \rightarrow b$$

Example:

- Let $A = \{0, 1, 2\}, B = \{u,v\} \text{ and } R = \{(0,u), (0,v), (1,v), (2,u)\}$
- Note: $R \subset A \times B$.
- Graph:

CS 441 Discrete mathematics for CS

Representing binary relations

• We can represent a binary relation R by a **table** showing (marking) the ordered pairs of R.

Example:

- Let $A = \{0, 1, 2\}, B = \{u,v\}$ and $R = \{(0,u), (0,v), (1,v), (2,u)\}$
- Table:

R	u	V	or	D	
				R u	V
0	X	X		0 1	1
1		X		1 0	1
2	X			2 1	0

CS 441 Discrete mathematics for CS

M. Hauskrecht

Relations and functions

- Relations represent **one to many relationships** between elements in A and B.
- Example:

• What is the difference between a **relation and a function from** A to B?

CS 441 Discrete mathematics for CS

Relations and functions

- Relations represent **one to many relationships** between elements in A and B.
- Example:

What is the difference between a relation and a function from A to B? A function on sets A,B A → B assigns to each element in the domain set A exactly one element from B. So it is a special relation.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Relation on the set

<u>Definition:</u> A relation on the set A is a relation from A to itself.

Example 1:

- Let $A = \{1,2,3,4\}$ and $R_{div} = \{(a,b)| a \text{ divides } b\}$
- What does R_{div} consist of?
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$

•	R	1	2	3	4
	1	X	X	X	X
	2		X		X
	3			X	
	4				X

CS 441 Discrete mathematics for CS

Relation on the set

Example:

- Let $A = \{1,2,3,4\}$.
- Define a R_{\neq} b if and only if a \neq b.

 $R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Binary relations

- **Theorem:** The number of binary relations on a set A, where |A| = n is:
 - 2^{n^2}

- Proof:
- If |A| = n then the cardinality of the Cartesian product $|A \times A| = n^2$.
- R is a binary relation on A if $R \subseteq A \times A$ (that is, R is a subset of A x A).
- The number of subsets of a set with k elements: 2^k

CS 441 Discrete mathematics for CS

Binary relations

• Theorem: The number of binary relations on a set A, where |A| = n is:

 2^{n^2}

- Proof:
- If |A| = n then the cardinality of the Cartesian product $|A \times A| = n^2$.
- R is a binary relation on A if R ⊆ A x A (that is, R is a subset of A x A).
- The number of subsets of a set with k elements: 2^k
- The number of subsets of A x A is: $2^{|AxA|} = 2^{n^2}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Binary relations

- **Example**: Let $A = \{1,2\}$
- What is A x A = $\{(1,1),(1,2),(2,1),(2,2)\}$
- List of possible relations (subsets of A x A):
- Ø
 (1,1)} {(1,2)} {(2,1)} {(2,2)} 4
 {(1,1), (1,2)} {(1,1), (2,1)} {(1,1), (2,2)} 6
 {(1,2), (2,1)} {(1,2), (2,2)} {(2,1), (2,2)}
 {(1,1), (1,2), (2,1)} {(1,1), (1,2), (2,2)} 4
 {(1,1), (2,1), (2,2)} {(1,2), (2,1), (2,2)}
 {(1,1), (1,2), (2,1), (2,2)} 1
- Use formula: $2^4 = 16$

CS 441 Discrete mathematics for CS

<u>Definition</u> (reflexive relation): A relation R on a set A is called reflexive if $(a,a) \in R$ for every element $a \in A$.

Example 1:

- Assume relation $R_{div} = \{(a b), if a | b\} \text{ on } A = \{1,2,3,4\}$
- Is R_{div} reflexive?
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- **Answer:** Yes. (1,1), (2,2), (3,3), and $(4,4) \in A$.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Reflexive relation

Reflexive relation

- $R_{div} = \{(a b), if a | b\}$ on $A = \{1,2,3,4\}$
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$

• A relation R is reflexive if and only if MR has 1 in every position on its main diagonal.

CS 441 Discrete mathematics for CS

<u>Definition</u> (reflexive relation): A relation R on a set A is called reflexive if $(a,a) \in R$ for every element $a \in A$.

Example 2:

- Relation R_{fun} on $A = \{1,2,3,4\}$ defined as:
 - $R_{\text{fun}} = \{(1,2),(2,2),(3,3)\}.$
- Is R_{fun} reflexive?
- No. It is not reflexive since $(1,1) \notin R_{fun}$.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Properties of relations

<u>Definition</u> (irreflexive relation): A relation R on a set A is called irreflexive if $(a,a) \notin R$ for every $a \in A$.

Example 1:

- Assume relation R_≠ on A={1,2,3,4}, such that a R_≠ b if and only if a ≠ b.
- Is R_≠ irreflexive?
- R_{\neq} ={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}
- **Answer:** Yes. Because (1,1),(2,2),(3,3) and $(4,4) \not\in R_{\neq}$

CS 441 Discrete mathematics for CS

Irreflexive relation

Irreflexive relation

- R_{\neq} on A={1,2,3,4}, such that $\mathbf{a} \ \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathbf{a} \neq \mathbf{b}$.
- $\mathbf{R}_{\neq} = \{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\}$

• A relation R is irreflexive if and only if MR has 0 in every position on its main diagonal.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Properties of relations

<u>Definition</u> (irreflexive relation): A relation R on a set A is called irreflexive if $(a,a) \notin R$ for every $a \in A$.

Example 2:

- R_{fun} on $A = \{1,2,3,4\}$ defined as:
 - $R_{fun} = \{(1,2),(2,2),(3,3)\}.$
- Is R_{fun} irreflexive?
- Answer: No. Because (2,2) and (3,3) $\in R_{fun}$

CS 441 Discrete mathematics for CS

<u>Definition</u> (symmetric relation): A relation R on a set A is called **symmetric** if

$$\forall a, b \in A \ (a,b) \in R \rightarrow (b,a) \in R.$$

Example 1:

- $R_{div} = \{(a b), if a | b\}$ on $A = \{1,2,3,4\}$
- Is R_{div} symmetric?
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- Answer: No. It is not symmetric since $(1,2) \in \mathbb{R}$ but $(2,1) \notin \mathbb{R}$.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Properties of relations

<u>Definition</u> (symmetric relation): A relation R on a set A is called symmetric if

$$\forall a, b \in A \ (a,b) \in R \rightarrow (b,a) \in R.$$

Example 2:

- \mathbf{R}_{\neq} on A={1,2,3,4}, such that $\mathbf{a} \ \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathbf{a} \neq \mathbf{b}$.
- Is R_{\neq} symmetric?
- $\bullet \quad R_{\neq} = \{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\}$
- Answer: Yes. If $(a,b) \in R_{\neq} \rightarrow (b,a) \in R_{\neq}$

CS 441 Discrete mathematics for CS

Symmetric relation

Symmetric relation:

- R_{\neq} on A={1,2,3,4}, such that $\mathbf{a} \ \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathbf{a} \neq \mathbf{b}$.
- R_{\neq} ={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}

• A relation R is symmetric if and only if $m_{ij} = m_{ji}$ for all i,j.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Properties of relations

<u>Definition</u> (symmetric relation): A relation R on a set A is called symmetric if

$$\forall a, b \in A \ (a,b) \in R \rightarrow (b,a) \in R.$$

Example 3:

- Relation R_{fun} on $A = \{1,2,3,4\}$ defined as:
 - $R_{fun} = \{(1,2),(2,2),(3,3)\}.$
- Is R_{fun} symmetric?
- Answer: No. For $(1,2) \in R_{\text{fun}}$ there is no $(2,1) \in R_{\text{fun}}$

CS 441 Discrete mathematics for CS

- <u>Definition (anti-symmetric relation)</u>: A relation on a set A is called **anti-symmetric** if
 - $[(a,b) \in R \text{ and } (b,a) \in R] \rightarrow a = b \text{ where } a,b \in A.$

Example 1:

- $R_{div} = \{(a b), if a | b\}$ on $A = \{1,2,3,4\}$
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- Is R_{div} anti-symmetric?
- Answer: Yes. There is no (a,b) and (b,a) in R for $a \neq b$.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Properties of relations

<u>Definition</u> (antisymmetric relation): A relation on a set A is called antisymmetric if

• $[(a,b) \in R \text{ and } (b,a) \in R] \rightarrow a = b \text{ where } a,b \in A.$

Example 2:

- R_{\neq} on A={1,2,3,4}, such that $\mathbf{a} \ \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathbf{a} \neq \mathbf{b}$.
- Is R_{\pm} antisymmetric?
- $R_{\perp} = \{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\}$
- Answer: No. It is not anti-symmetric since $(1,2) \in R$ and $(2,1) \in R$ but $1 \neq 2$.

CS 441 Discrete mathematics for CS

<u>Definition</u> (anti-symmetric relation): A relation on a set A is called anti-symmetric if

• $[(a,b) \in R \text{ and } (b,a) \in R] \rightarrow a = b \text{ where } a,b \in A.$

Example 3:

- Relation R_{fun} on $A = \{1,2,3,4\}$ defined as:
 - $R_{\text{fun}} = \{(1,2),(2,2),(3,3)\}.$
- Is R_{fun} anti-symmetric?
- Answer: Yes. It is anti-symmetric

CS 441 Discrete mathematics for CS

M. Hauskrecht

Antisymmetric relations

Antisymmetric relation

• relation $R_{\text{fun}} = \{(1,2),(2,2),(3,3)\}$

$$MR_{fun} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

A relation is antisymmetric if and only if m_{ij} = 1 → m_{ji} = 0 for i≠ j.

CS 441 Discrete mathematics for CS

Definition (transitive relation): A relation R on a set A is called **transitive** if

- $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R \text{ for all } a,b,c \in A.$
- Example 1:
- $R_{div} = \{(a b), if a | b\}$ on $A = \{1,2,3,4\}$
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- Is R_{div} transitive?
- · Answer: Yes.

CS 441 Discrete mathematics for CS