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Integers and division

* Number theory is a branch of mathematics that explores
integers and their properties.

* Integers:
- Z integers{...,-2,-1,0,1,2, ...}
— Z* positive integers {1, 2, ...}

» Number theory has many applications within computer science,
including:
— Storage and organization of data
— Encryption
— Error correcting codes
— Random numbers generators
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Division

Definition: Assume 2 integers a and b, such that a =/ 0 (a is not
equal 0). We say that a divides b if there is an integer ¢ such
that b = ac. If adivides b we say that a is a factor of b and that
b is multiple of a.

» The fact that a divides b is denoted as a | b.

Examples:

e 4|24 TrueorFalse? True
* 4isafactor of 24
o 24 isamultiple of 4

e 3|7 TrueorFalse? False

CS 441 Discrete mathematics for CS M. Hauskrecht

Primes

Definition: A positive integer p that greater than 1 and that is
divisible only by 1 and by itself (p) is called a prime.

Examples: 2, 3,5, 7, ...
1]2and 2|2, 1|3and 3|3, etc
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The Fundamental theorem of Arithmetic

Fundamental theorem of Arithmetic:

» Any positive integer greater than 1 can be expressed as a product
of prime numbers.

Examples:
o 12 =2%2*3
o 21 =3*7

» Process of finding out factors of the product: factorization.
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Primes and composites

» How to determine whether the number is a prime or a
composite?

Let n be a number. Then in order to determine whether it is a

prime we can test:

e Approach 1: if any number x < n divides it. If yes itis a
composite. If we test all numbers x < n and do not find the
proper divisor then n is a prime.

» Approach 2: if any prime number x < n divides it. If yes itis a
composite. If we test all primes x < n and do not find a proper
divisor then n is a prime.

 Approach 3: if any prime number x <+/n divides it. If yes it is
a composite. If we test all primes x <\/n and do not find a proper
divisor then n is a prime.
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Division
Let a be an integer and d a positive integer. Then there are unique

integers, q and r, with 0 <=r < d, such that
a=dq+r.

Definitions:

» ais called the dividend,

» dis called the divisor,

» qis called the quotient and
 rthe remainder of the division.

Relations:
e g=adivd, r=amodd
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Greatest common divisor

Definition: Let a and b are integers, not both 0. Then the largest
integer d such that d |aand d | b is called the greatest common
divisor of a and b. The greatest common divisor is denoted as
gcd(a,b).

Examples:
e gcd(24,36) ="?
o 12 (start with 2,3,4,6,12)
e gcd(11,23) ="
e 2ways: 1) Check 2,3,4,5,6 ...
2) 11 is a prime so only the multiples of it are possible
* no positive integer greater than 1 that divides both numbers
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Greatest common divisor

A systematic way to find the gcd using factorization:

* Leta=p,* p," ps™ ... p€and b= p,* p,"2 p;* ... p
. gcd(a,b): pl min(al,bl) p2 min(a2,b2) p3 min(a3,b3) pk min(ak,bk)

Examples:

* gcd(24,36) ="?

o 24 =2%2%2*3=2%"3

o 36= 2%2*3*3=22"32

e gcd(24,36) =223 =12
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Least common multiple

Definition: Letaand b are two positive integers. The least
common multiple of a and b is the smallest positive integer that
is divisible by both a and b. The least common multiple is
denoted as Icm(a,b).

Example:

e Whatis lcm(12,9) =?

» Give me a common multiple: ... 12*9= 108
» Can we find a smaller number?

e Yes. Try 36. Both 12 and 9 cleanly divide 36.
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Least common multiple

A systematic way to find the lcm using factorization:

* Leta=p,* p,” ps* ... p¢and b= p," p,°2 pg* ... p %
° Icm(a,b): pl max(al,bl) p2 max(a2,b2) p3 max(a3,b3) pk max(ak,bk)

Example:

* Whatis Ilcm(12,9) =?

o 12 =2%2%3=22*3

e 9=3*3=32

e lcm(12,9) =22*324*9=36
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Euclid algorithm

Finding the greatest common divisor requires factorization

I Pl A o I e T A R
. gcd(a,b): pl min(al,bl) p2 min(a2,b2) p3 min(a3,b3) pk min(ak,bk)

 Factorization can be cumbersome and time consuming since we
need to find all factors of the two integers that can be very large.

 Luckily a more efficient method for computing the gcd exists:
 ltiscalled Euclid’s algorithm

— the method is known from ancient times and named after
Greek mathematician Euclid.
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Euclid algorithm

Assume two numbers 287 and 91. We want gcd(287,91).
 First divide the larger number (287) by the smaller one (91)
* We get 281 = 3*91 +14
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Euclid algorithm

Assume two numbers 287 and 91. We want gcd(287,91).
* First divide the larger number (287) by the smaller one (91)
* We get 287 = 3*91 +14

(1) Any divisor of 91 and 287 must also be a divisor of 14:
» 287 - 3*91=14

e Why? [ak—-cbk]=r > (a-cb)k=r -> (a-cb) =r/k (must be
an integer and thus k divides r ]

(2) Any divisor of 91 and 14 must also be a divisor of 287

e Why? 287 =3bk+dk > 287=k(3b+d) - 287/k=(3b
+d) € 287/k must be an integer

» But then gcd(287,91) = gcd(91,14)
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Euclid algorithm

» We know that gcd(287,91) = gcd(91,14)
» But the same trick can be applied again:
* gcd(91,14)
*91=146+7
* and therefore
— gcd(91,14)=gcd(14,7)

* And one more time:
- ged(14,7) =7
— trivial
* The result: gcd(287,91) = gcd(91,14)=gcd(14,7) = 7
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Euclid algorithm

Example 1:
 Find the greatest common divisor of 666 & 558

* gcd(666,558) 666=1*558 + 108
= gcd(558,108) 558=5*108 + 18
= gcd(108,18) 108=6*18 + 0
=18
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Euclid algorithm

Example 2:
» Find the greatest common divisor of 286 & 503:

» gcd(503,286) 503=1*286 + 217
=gcd(286, 217) 286=1*217 + 69
=gcd(217, 69) 217 = 3*69 + 10
= gcd(69,10) 69 =6*10 +9
=gcd(10,9) 10=1*9 + 1
=gcd(9,1) =1
CS 441 Discrete mathematics for CS M. Hauskrecht

Modular arithmetic

* In computer science we often care about the remainder of an
integer when it is divided by some positive integer.

Problem: Assume that it is a midnight. What is the time on the 24
hour clock after 50 hours?

Answer: the result is 2am
How did we arrive to the result:

» Divide 50 with 24. The reminder is the time on the 24 hour
clock.

— 50=2*24+2
— so the result is 2am.
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Congruency

Definition: If a and b are integers and m is a positive integer, then
a is congruent to b modulo n if m divides a-b. We use the
notation a = b (mod m) to denote the congruency. If aand b are
not congruent we write a /= b (mod m).

Example:

» Determine if 17 is congruent to 5 modulo 6?
e 17-5=12,

* 6divides 12

* 50 17 is congruent to 5 modulo 6.

CS 441 Discrete mathematics for CS M. Hauskrecht

Congruency

Theorem. If a and b are integers and m a positive integer. Then
a=b (mod m) if and only if a mod m = b mod b.

Example:

» Determine if 17 is congruent to 5 modulo 6?
e 17mod6=5

* 5mod6=5

e Thus 17 is congruent to 5 modulo 6.
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Congruencies

Theorem 1. Let m be a positive integer. The integers a and b are
congruent modulo m if and only if there exists an integer k such
that a=b+mk.

Theorem2 . Let m be a positive integer. If a=b (mod m) and c=d
(mod m) then:

a+c = b+d (mod m) and ac=bd (mod m).
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Modular arithmetic in CS

Modular arithmetic and congruencies are used in CS:
— Pseudorandom number generators
— Hash functions
— Cryptology
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Pseudorandom number generators

Linear congruential method
* We choose 4 numbers:
* the modulus m,
» multiplier a,
* increment c, and
* seed X,
suchthat2 =<a<m,0=<c<m,0=<x,<m.

» We generate a sequence of numbers X; X, X;... X, ... such that
0 =< x, < m for all n by successively using the congruence:

* Xu4q = (aX,+c) mod m
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Pseudorandom number generators

Linear congruential method:

* X4 = (ax, +c)mod m
Example:
* Assume : m=9,a=7,c=4, X, = 3

* X,= 7*3+4 mod 9=25 mod 9 =7
* X,=53mod9=8
* X;=60mod 9 =6
* X,= 46 mod9=1
* Xg=11mod 9 =2
* Xg=18mod 9 =0
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Cryptology

Encryption of messages.
» Anidea: Shift letters in the message
— e.g. Alis shifted to D ( a shift by 3)

How to represent the idea of a shift by 3?

» There are 26 letters in the alphabet. Assign each of them a
number from 0,1, 2, 3, .. 25 according to the alphabetical order.

ABCDEFGHIJKLMNOPQRSTUYVXWZ

0123456 780910 1112 13141516171819202122232425

» The encryption of the letter with an index p is represented as:
* f(p) =(p + 3) mod 26

CS 441 Discrete mathematics for CS M. Hauskrecht

Cryptology

Encryption of messages using a shift by 3.

» The encryption of the letter with an index p is represented as:
e f(p) = (p + 3) mod 26

Coding of letters:

ABCDEFGHIJKLMNOPQRS ST UYVXWZ
0123456 789101112 13141516171819202122232425

« Encrypt message:
- | LIKE DISCRETE MATH
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Cryptology

Encryption of messages using a shift by 3.
» The encryption of the letter with an index p is represented as:
» f(p) =(p + 3) mod 26

Coding of letters:
ABCDEFGHIJKLMNOPQRSTUYVXWZ
0123456 780910 1112 13141516171819202122232425

* Encrypt message:
— | LIKE DISCRETE MATH

- L OLNH GLYFUHVH PDVK.
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Cryptology

How to decode the message ?

» The encryption of the letter with an index p is represented as:
e f(p) = (p + 3) mod 26

Coding of letters:

ABCDEFGHIJKLMNOPQRS ST UYVXWZ
0123456 789101112 13141516171819202122232425

* What is method would you use to decode the message:
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Cryptology

How to decode the message ?

» The encryption of the letter with an index p is represented as:

» f(p) =(p + 3) mod 26
Coding of letters:

ABCDEFGHIJKLMNOPQR ST UYVXWZ
0123456 78910 1112 1314151617 18192021 22232425

* What is method would you use to decode the message:

« ¥1(p) = (p-3) mod 26
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