CS 441 Discrete Mathematics for CS Lecture 13

Integers and division

Milos Hauskrecht

<u>milos@</u>cs.pitt.edu
5329 Sennott Square

CS 441 Discrete mathematics for CS

M. Hauskrecht

Integers and division

- **Number theory** is a branch of mathematics that explores integers and their properties.
- Integers:
 - Z integers {..., -2,-1, 0, 1, 2, ...}
 - **Z**⁺ positive integers {1, 2, ...}
- Number theory has many applications within computer science, including:
 - Storage and organization of data
 - Encryption
 - Error correcting codes
 - Random numbers generators

CS 441 Discrete mathematics for CS

Division

Definition: Assume 2 integers a and b, such that a =/0 (a is not equal 0). We say that **a divides b** if there is an integer c such that b = ac. If a divides b we say that **a is a** *factor* **of b** and that **b is** *multiple* **of a**.

• The fact that a divides b is denoted as **a** | **b**.

Examples:

- 4 | 24 True or False ? True
 - 4 is a factor of 24
 - 24 is a multiple of 4
- 3 | 7 True or False ? False

CS 441 Discrete mathematics for CS

M. Hauskrecht

Primes

Definition: A positive integer p that greater than 1 and that is divisible only by 1 and by itself (p) is called **a prime**.

Examples: 2, 3, 5, 7, ... 1 | 2 and 2 | 2, 1 | 3 and 3 | 3, etc

CS 441 Discrete mathematics for CS

The Fundamental theorem of Arithmetic

Fundamental theorem of Arithmetic:

• Any positive integer greater than 1 can be expressed as a product of prime numbers.

Examples:

- 12 = 2*2*3
- 21 = 3*7
- Process of finding out factors of the product: **factorization**.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Primes and composites

• How to determine whether the number is a prime or a composite?

Let n be a number. Then in order to determine whether it is **a prime** we can test:

- Approach 1: if any number x < n divides it. If yes it is a composite. If we test all numbers x < n and do not find the proper divisor then n is a prime.
- Approach 2: if any prime number x < n divides it. If yes it is a composite. If we test all primes x < n and do not find a proper divisor then n is a prime.
- Approach 3: if any prime number $x < \sqrt{n}$ divides it. If yes it is a composite. If we test all primes $x < \sqrt{n}$ and do not find a proper divisor then n is a prime.

CS 441 Discrete mathematics for CS

Division

Let a be an integer and d a positive integer. Then there are unique integers, q and r, with $0 \le r < d$, such that

$$a = dq + r$$
.

Definitions:

- a is called the **dividend**,
- d is called the divisor,
- q is called the **quotient** and
- r the **remainder** of the division.

Relations:

• $q = a \operatorname{div} d$, $r = a \operatorname{mod} d$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Greatest common divisor

Definition: Let a and b are integers, not both 0. Then the largest integer d such that d | a and d | b is called **the greatest common divisor** of a and b. The greatest common divisor is denoted as gcd(a,b).

Examples:

- gcd(24,36) = ?
- 12 (start with 2,3,4,6,12)
- gcd(11,23) = ?
- 2 ways: 1) Check 2,3,4,5,6 ...
 - 2) 11 is a prime so only the multiples of it are possible
- no positive integer greater than 1 that divides both numbers

CS 441 Discrete mathematics for CS

Greatest common divisor

A systematic way to find the gcd using factorization:

- Let $a=p_1{}^{a1}\ p_2{}^{a2}\ p_3{}^{a3}\ ...\ p_k{}^{ak}$ and $b=p_1{}^{b1}\ p_2{}^{b2}\ p_3{}^{b3}\ ...\ p_k{}^{bk}$
- $gcd(a,b) = p_1^{\min(a1,b1)} p_2^{\min(a2,b2)} p_3^{\min(a3,b3)} \dots p_k^{\min(ak,bk)}$

Examples:

- gcd(24,36) = ?
- $24 = 2*2*2*3=2^{3*}3$
- 36= 2*2*3*3=2^{2*}3²
- $gcd(24,36) = 2^{2*}3 = 12$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Least common multiple

Definition: Let a and b are two positive integers. The least common multiple of a and b is the smallest positive integer that is divisible by both a and b. The **least common multiple** is denoted as **lcm(a,b)**.

Example:

- What is lcm(12,9) = ?
- Give me a common multiple: ... 12*9= 108
- Can we find a smaller number?
- Yes. Try 36. Both 12 and 9 cleanly divide 36.

CS 441 Discrete mathematics for CS

Least common multiple

A systematic way to find the lcm using factorization:

- Let $a=p_1^{a1} p_2^{a2} p_3^{a3} \dots p_k^{ak}$ and $b=p_1^{b1} p_2^{b2} p_3^{b3} \dots p_k^{bk}$
- $lcm(a,b) = p_1^{max(a1,b1)} p_2^{max(a2,b2)} p_3^{max(a3,b3)} \dots p_k^{max(ak,bk)}$

Example:

- What is lcm(12,9) = ?
- $12 = 2*2*3 = 2^2*3$
- 9=3*3 =3²
- $lcm(12,9) = 2^2 * 3^2 = 4 * 9 = 36$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Euclid algorithm

Finding the greatest common divisor requires factorization

- $\bullet \quad a = p_1{}^{a1} \; p_2{}^{a2} \; p_3{}^{a3} \; \ldots \; p_k{}^{ak}, \quad b = p_1{}^{b1} \; p_2{}^{b2} \; p_3{}^{b3} \; \ldots \; p_k{}^{bk}$
- $gcd(a,b) = p_1^{\min(a1,b1)} p_2^{\min(a2,b2)} p_3^{\min(a3,b3)} \dots p_k^{\min(ak,bk)}$
- Factorization can be cumbersome and time consuming since we need to find all factors of the two integers that can be very large.
- Luckily a more efficient method for computing the gcd exists:
- It is called **Euclid's algorithm**
 - the method is known from ancient times and named after
 Greek mathematician Euclid.

CS 441 Discrete mathematics for CS

Euclid algorithm

Assume two numbers 287 and 91. We want gcd(287,91).

- First divide the larger number (287) by the smaller one (91)
- We get 281 = 3*91 + 14

CS 441 Discrete mathematics for CS

M. Hauskrecht

Euclid algorithm

Assume two numbers 287 and 91. We want gcd(287,91).

- First divide the larger number (287) by the smaller one (91)
- We get 287 = 3*91 + 14
- (1) Any divisor of 91 and 287 must also be a divisor of 14:

- Why? $[ak cbk] = r \rightarrow (a-cb)k = r \rightarrow (a-cb) = r/k$ (must be an integer and thus k divides r]
- (2) Any divisor of 91 and 14 must also be a divisor of 287
- Why? $287 = 3 b k + dk \rightarrow 287 = k(3b + d) \rightarrow 287 / k = (3b + d) \leftarrow 287 / k$ must be an integer
- But then gcd(287,91) = gcd(91,14)

CS 441 Discrete mathematics for CS

Euclid algorithm

- We know that gcd(287,91) = gcd(91,14)
- But the same trick can be applied again:
 - gcd(91,14)
 - 91 = 14.6 + 7
- and therefore
 - $-\gcd(91,14)=\gcd(14,7)$
- And one more time:
 - $-\gcd(14,7)=7$
 - trivial
- The result: gcd(287,91) = gcd(91,14) = gcd(14,7) = 7

CS 441 Discrete mathematics for CS

M. Hauskrecht

Euclid algorithm

Example 1:

- Find the greatest common divisor of 666 & 558
- gcd(666,558) 666=1*558 + 108 = gcd(558,108) 558=5*108 + 18 = gcd(108,18) 108=6*18 + 0

= 18

CS 441 Discrete mathematics for CS

Euclid algorithm

503=1*286+217

286=1*217+69217=3*69+10

69 = 6*10 + 910=1*9 + 1

Example 2:

- Find the greatest common divisor of 286 & 503:
- gcd(503,286) =gcd(286, 217) =gcd(217, 69) = gcd(69,10) =gcd(10,9)

 $= \gcd(9,1) = 1$

M. Hauskrecht

Modular arithmetic

CS 441 Discrete mathematics for CS

• In computer science we often care about the remainder of an integer when it is divided by some positive integer.

Problem: Assume that it is a midnight. What is the time on the 24 hour clock after 50 hours?

Answer: the result is 2am

How did we arrive to the result:

- Divide 50 with 24. The reminder is the time on the 24 hour clock.
 - -50=2*24+2
 - so the result is 2am.

CS 441 Discrete mathematics for CS

Congruency

Definition: If a and b are integers and m is a positive integer, then **a is congruent to b modulo n** if m divides a-b. We use the notation **a = b (mod m)** to denote the congruency. If a and b are not congruent we write a /= b (mod m).

Example:

- Determine if 17 is congruent to 5 modulo 6?
- 17 5=12,
- 6 divides 12
- so 17 is congruent to 5 modulo 6.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Congruency

Theorem. If a and b are integers and m a positive integer. Then a=b (mod m) if and only if a mod m = b mod b.

Example:

- Determine if 17 is congruent to 5 modulo 6?
- $17 \mod 6 = 5$
- $5 \mod 6 = 5$
- Thus 17 is congruent to 5 modulo 6.

CS 441 Discrete mathematics for CS

Congruencies

Theorem 1. Let m be a positive integer. The integers a and b are congruent modulo m if and only if there exists an integer k such that a=b+mk.

Theorem2. Let m be a positive integer. If a=b (mod m) and c=d (mod m) then:

 $a+c = b+d \pmod{m}$ and $ac=bd \pmod{m}$.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Modular arithmetic in CS

Modular arithmetic and congruencies are used in CS:

- Pseudorandom number generators
- Hash functions
- Cryptology

CS 441 Discrete mathematics for CS

Pseudorandom number generators

Linear congruential method

- We choose 4 numbers:
 - the modulus m,
 - multiplier a,
 - increment c, and
 - seed x_0 ,

such that 2 = < a < m, 0 = < c < m, $0 = < x_0 < m$.

- We generate a sequence of numbers $x_1, x_2, x_3, ..., x_n$ such that $0 = < x_n < m$ for all n by successively using the congruence:
 - $x_{n+1} = (ax_n + c) \mod m$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Pseudorandom number generators

Linear congruential method:

•
$$x_{n+1} = (ax_n + c) \mod m$$

Example:

- Assume: $m=9, a=7, c=4, x_0=3$
- $x_1 = 7*3+4 \mod 9=25 \mod 9=7$
- $x_2 = 53 \mod 9 = 8$
- $x_3 = 60 \mod 9 = 6$
- $x_4 = 46 \mod 9 = 1$
- $x_5 = 11 \mod 9 = 2$
- $x_6 = 18 \mod 9 = 0$
-

CS 441 Discrete mathematics for CS

Cryptology

Encryption of messages.

- An idea: Shift letters in the message
 - e.g. A is shifted to D (a shift by 3)

How to represent the idea of a shift by 3?

• There are 26 letters in the alphabet. Assign each of them a number from 0,1, 2, 3, .. 25 according to the alphabetical order.

ABCDEFGHIJK LMNOPQRSTUYVXWZ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

- The encryption of the letter with an index p is represented as:
 - $f(p) = (p + 3) \mod 26$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Cryptology

Encryption of messages using a shift by 3.

- The encryption of the letter with an index p is represented as:
 - $f(p) = (p + 3) \mod 26$

Coding of letters:

ABCD E F G H I J K L M N O P Q R S T U Y V X W Z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

- Encrypt message:
 - I LIKE DISCRETE MATH

_

CS 441 Discrete mathematics for CS

Cryptology

Encryption of messages using a shift by 3.

- The encryption of the letter with an index p is represented as:
 - $f(p) = (p + 3) \mod 26$

Coding of letters:

ABCDEFGHIJK LMNOPQRSTUYVXWZ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

- Encrypt message:
 - I LIKE DISCRETE MATH
 - L 0LNH GLYFUHVH PDVK.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Cryptology

How to decode the message?

- The encryption of the letter with an index p is represented as:
 - $f(p) = (p + 3) \mod 26$

Coding of letters:

ABCD E F G H I J K L M N O P Q R S T U Y V X W Z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

• What is method would you use to decode the message:

CS 441 Discrete mathematics for CS

Cryptology

How to decode the message?

- The encryption of the letter with an index p is represented as:
 - $f(p) = (p + 3) \mod 26$

Coding of letters:

ABCDEFGHIJK LMNOPQRSTUYVXWZ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

- What is method would you use to decode the message:
 - $f^{-1}(p) = (p-3) \mod 26$

CS 441 Discrete mathematics for CS