CS 441 Discrete Mathematics for CS Lecture 12

Integers and division

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 441 Discrete mathematics for CS

M. Hauskrecht

Matrix transpose

Definition:

• Let $\mathbf{A} = [a_{ij}]$ be an $m \times n$ matrix. The **transpose** of \mathbf{A} , denoted by \mathbf{A}^{T} , is the $n \times m$ matrix obtained by interchanging the rows and columns of \mathbf{A} .

If
$$\mathbf{A}^{T} = [b_{ij}]$$
, then $b_{ij} = a_{ji}$ for $i = 1, 2, ..., n$ and $j = 1, 2, ..., m$.

The transpose of the matrix
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
 is the matrix $\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$.

CS 441 Discrete mathematics for CS

Symmetric matrix

Definition:

- A square matrix **A** is called **symmetric** if $\mathbf{A} = \mathbf{A}^{\mathrm{T}}$.
- Thus $\mathbf{A} = [a_{ij}]$ is symmetric if $a_{ij} = a_{ji}$ for i and j with $1 \le i \le n$ and $1 \le j \le n$.
- Example:

• Is it a symmetric matrix?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Symmetric matrix

Definition:

- A square matrix **A** is called **symmetric** if $\mathbf{A} = \mathbf{A}^{T}$.
- Thus $\mathbf{A} = [a_{ij}]$ is symmetric if $a_{ij} = a_{ji}$ for i and j with $1 \le i \le n$ and $1 \le j \le n$.
- Example:

• Is it a symmetric matrix? yes

CS 441 Discrete mathematics for CS

Zero-one matrix

Definition:

- A matrix all of whose entries are either 0 or 1 is called a zeroone matrix.
- Algorithms operating on discrete structures represented by zeroone matrices are based on Boolean arithmetic defined by the following Boolean operations:

$$b_1 \wedge b_2 = \begin{cases} 1 & \text{if } b_1 = b_2 = 1\\ 0 & \text{otherwise} \end{cases}$$

$$b_1 \lor b_2 = \begin{cases} 1 & \text{if } b_1 = 1 \text{ or } b_2 = 1 \\ 0 & \text{otherwise} \end{cases}$$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Join and meet of matrices

Definition: Let A and B be two matrices:

$$\mathbf{A} = \left[\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right], \qquad \mathbf{B} = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 1 & 0 \end{array} \right].$$

• The join of A and B is:

$$\mathbf{A} \vee \mathbf{B} = \left[\begin{array}{ccc} 1 \vee 0 & 0 \vee 1 & 1 \vee 0 \\ 0 \vee 1 & 1 \vee 1 & 0 \vee 0 \end{array} \right] = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 0 \end{array} \right].$$

• The meet of A and B is

$$\mathbf{A} \wedge \mathbf{B} = \left[\begin{array}{ccc} 1 \wedge 0 & 0 \wedge 1 & 1 \wedge 0 \\ 0 \wedge 1 & 1 \wedge 1 & 0 \wedge 0 \end{array} \right] = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right].$$

CS 441 Discrete mathematics for CS

CS 441 Discrete Mathematics for CS Lecture 12

Integers and division

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 441 Discrete mathematics for CS

M. Hauskrecht

Integers and division

- **Number theory** is a branch of mathematics that explores integers and their properties.
- Integers:
 - Z integers {..., -2,-1, 0, 1, 2, ...}
 - **Z**⁺ positive integers {1, 2, ...}
- Number theory has many applications within computer science, including:
 - Storage and organization of data
 - Encryption
 - Error correcting codes
 - Random numbers generators

CS 441 Discrete mathematics for CS

Division

Definition: Assume 2 integers a and b, such that a =/0 (a is not equal 0). We say that **a divides b** if there is an integer c such that b = ac. When a divides b we say that **a is a** *factor* **of b** and that **b is** *multiple* **of a**.

• The fact that a divides b is denoted as **a** | **b**.

Examples:

- 4 | 24 True or False? True
 - 4 is a factor of 24
 - 24 is a multiple of 4
- 3 | 7 True or False?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Division

Definition: Assume 2 integers a and b, such that a =/0 (a is not equal 0). We say that **a divides b** if there is an integer c such that b = ac. If a divides b we say that **a is a** *factor* **of b** and that **b is** *multiple* **of a**.

• The fact that a divides b is denoted as **a** | **b**.

Examples:

- 4 | 24 True or False ? True
 - 4 is a factor of 24
 - 24 is a multiple of 4
- 3 | 7 True or False? False

CS 441 Discrete mathematics for CS

Divisibility

All integers divisible by d>0 can be enumerated as:

Question:

Let n and d be two positive integers. How many positive integers not exceeding *n* are divisible by d?

• Answer:

Count the number of integers kd that are less than n. What is the the number of integers k such that $0 < kd \le n$? $0 < kd \le n \rightarrow 0 < k \le n/d$. Therefore, there are $\lfloor n/d \rfloor$ positive integers not exceeding n that are divisible by d.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Divisibility

Properties:

- Let a, b, c be integers. Then the following hold:
 - 1. if $a \mid b$ and $a \mid c$ then $a \mid (b + c)$
 - 2. if a | b then a | bc for all integers c
 - 3. if $a \mid b$ and $b \mid c$ then $a \mid c$

Proof of 1: if $a \mid b$ and $a \mid c$ then $a \mid (b + c)$

- from the definition of divisibility we get:
- b=au and c=av where u,v are two integers. Then
- (b+c) = au + av = a(u+v)
- Thus a divides b+c.

CS 441 Discrete mathematics for CS

Divisibility

Properties:

- Let a, b, c be integers. Then the following hold:
 - 1. if $a \mid b$ and $a \mid c$ then $a \mid (b + c)$
 - 2. if a | b then a | bc for all integers c
 - 3. if $a \mid b$ and $b \mid c$ then $a \mid c$

Proof of 2: if a | b then a | bc for all integers c

- If $a \mid b$, then there is some integer u such that b = au.
- Multiplying both sides by c gives us bc = auc, so by definition, a | bc.
- Thus a divides bc.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Primes

Definition: A positive integer p that greater than 1 and that is divisible only by 1 and by itself (p) is called **a prime**.

Examples: 2, 3, 5, 7, ... 1 | 2 and 2 | 2, 1 | 3 and 3 | 3, etc

CS 441 Discrete mathematics for CS

Primes

Definition: A positive integer p that greater than 1 and that is divisible only by 1 and by itself (p) is called **a prime**.

```
Examples: 2, 3, 5, 7, ... 1 | 2 and 2 | 2, 1 | 3 and 3 | 3, etc
```

What is the next prime after 7?

• ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Primes

Definition: A positive integer p that greater than 1 and that is divisible only by 1 and by itself (p) is called **a prime**.

```
Examples: 2, 3, 5, 7, ... 1 | 2 and 2 | 2, 1 | 3 and 3 | 3, etc
```

What is the next prime after 7?

• 11 Next?

CS 441 Discrete mathematics for CS

Primes

Definition: A positive integer p that greater than 1 and that is divisible only by 1 and by itself (p) is called **a prime**.

```
Examples: 2, 3, 5, 7, ... 1 | 2 and 2 | 2, 1 | 3 and 3 | 3, etc
```

What is the next prime after 7?

• 11

Next?

• 13

CS 441 Discrete mathematics for CS

M. Hauskrecht

Primes

<u>**Definition**</u>: A positive integer that is greater than 1 and is not a prime is called **a composite**.

```
Examples: 4, 6, 8, 9, ... Why?
2 | 4
3 | 6 or 2 | 6
2 | 8 or 4 | 8
3 | 9
```

CS 441 Discrete mathematics for CS

The Fundamental theorem of Arithmetic

Fundamental theorem of Arithmetic:

• Any positive integer greater than 1 can be expressed as a product of prime numbers.

Examples:

- 12 = 2*2*3
- 21 = ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

The Fundamental theorem of Arithmetic

Fundamental theorem of Arithmetic:

• Any positive integer greater than 1 can be expressed as a product of prime numbers.

Examples:

- 12 = 2*2*3
- 21 = 3*7
- Process of finding out factors of the product: **factorization**.

CS 441 Discrete mathematics for CS

Factorization of composites to primes:

- $100 = 2*2*5*5 = 2^2*5^2$
- $99 = 3*3*11 = 3^2*11$

Important question:

• How to determine whether the number is a prime or a composite?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Primes and composites

• How to determine whether the number is a prime or a composite?

Simple approach (1):

• Let n be a number. To determine whether it is a prime we can test if any number x < n divides it. If yes it is a composite. If we test all numbers x < n and do not find the proper divisor then n is a prime.

CS 441 Discrete mathematics for CS

 How to determine whether the number is a prime or a composite?

Simple approach (1):

- Let n be a number. To determine whether it is a prime we can test if any number x < n divides it. If yes it is a composite. If we test all numbers x < n and do not find the proper divisor then n is a prime.
- Is this the best we can do?
- No. The problem here is that we try to test all the numbers. But this is not necessary.
- **Idea:** Every composite factorizes to a product of primes. So it is sufficient to test only the primes x < n to determine the primality of n.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Primes and composites

• How to determine whether the number is a prime or a composite?

Approach 2:

Let n be a number. To determine whether it is a prime we can test if any prime number x < n divides it. If yes it is a composite. If we test all primes x < n and do not find a proper divisor then n is a prime.

CS 441 Discrete mathematics for CS

• How to determine whether the number is a prime or a composite?

Approach 2:

- Let n be a number. To determine whether it is a prime we can test if any prime number x < n divides it. If yes it is a composite. If we test all primes x < n and do not find the proper divisor then n is a prime.
- If *n* is relatively small the test is good because we can enumerate (memorize) all small primes
- But if *n* is large there can be larger not obvious primes

CS 441 Discrete mathematics for CS

M. Hauskrecht

Primes and composites

• How to determine whether the number is a prime or a composite?

Approach 2:

- Let n be a number. To determine whether it is a prime we can test if any prime number x < n divides it. If yes it is a composite. If we test all primes x < n and do not find the proper divisor then n is a prime.
- If *n* is relatively small the test is good because we can enumerate (memorize) all small primes
- But if *n* is large there can be larger not obvious primes

Example: Is 91 a prime number?

- Easy primes 2,3,5,7,11,13,17,19 ...
- But how many primes are there that are smaller than 91

CS 441 Discrete mathematics for CS

Theorem: If n is a composite then n has a prime divisor less than or equal to \sqrt{n} .

Proof:

- If n is composite, then it has a positive integer factor a such that 1 < a < n by definition. This means that n = ab, where b is an integer greater than 1.
- Assume $a > \sqrt{n}$ and $b > \sqrt{n}$. Then $ab > \sqrt{n}\sqrt{n} = n$, which is a contradiction. So either $a \le \sqrt{n}$ or $b \le \sqrt{n}$.
- Thus, *n* has a divisor less than \sqrt{n} .
- By the fundamental theorem of arithmetic, this divisor is either prime, or is a product of primes. In either case, n has a prime divisor less than \sqrt{n} .

CS 441 Discrete mathematics for CS

M. Hauskrecht

Primes and composites

Theorem: If n is a composite then n has a prime divisor less than or equal to \sqrt{n} .

Approach 3:

• Let *n* be a number. To determine whether it is a prime we can test if any prime number $x < \sqrt{n}$ divides it.

Example 1: Is 101 a prime?

- Primes smaller than $\sqrt{101} = 10.xxx$ are: 2,3,5,7
- 101 is not divisible by any of them
- Thus 101 is a prime

CS 441 Discrete mathematics for CS

Theorem: If n is a composite that n has a prime divisor less than or equal to \sqrt{n} .

Approach 3:

• Let *n* be a number. To determine whether it is a prime we can test if any prime number $x < \sqrt{n}$ divides it.

Example 1: Is 101 a prime?

- Primes smaller than $\sqrt{101} = 10.xxx$ are: 2,3,5,7
- 101 is not divisible by any of them
- Thus 101 is a prime

Example 2: Is 91 a prime?

- Primes smaller than $\sqrt{91}$ are: 2,3,5,7
- 91 is divisible by 7
- Thus 91 is a composite

CS 441 Discrete mathematics for CS

M. Hauskrecht

Primes

Question: How many primes are there?

Theorem: There are infinitely many primes.

Proof by Euclid.

- Proof by contradiction:
 - Assume there is a finite number of primes: $p_1, p_2, ...p_n$
- Let $Q = p_1 p_2 ... p_n + 1$ be a number.
- None of the numbers $p_1, p_2, ..., p_n$ divides the number Q.
- This is a contradiction since we assumed that we have listed all primes.

CS 441 Discrete mathematics for CS

Division

Let a be an integer and d a positive integer. Then there are unique integers, q and r, with $0 \le r < d$, such that

$$a = dq + r$$
.

Definitions:

- a is called the **dividend**,
- d is called the **divisor**,
- q is called the quotient and
- r the **remainder** of the division.

Relations:

• $q = a \operatorname{div} d$, $r = a \operatorname{mod} d$

CS 441 Discrete mathematics for CS