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CS 441 Discrete Mathematics for CS
Lecture 11

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

Sequences and summations (cont.)     
Matrices. 
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Course administration

Homework 5 is out

• Due on Monday, February 25 2013

• Recitations: Wednesday at 1:00pm and 2:00pm

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs441/
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Arithmetic series

Definition: The sum of the terms of the arithmetic progression

a, a+d,a+2d, …, a+nd is called an arithmetic series. 

Theorem: The sum of the terms of the arithmetic progression

a, a+d,a+2d, …, a+nd is
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Geometric series

Definition: The sum of the terms of a geometric progression a, ar, 
ar2, ..., ark is called a geometric series.

Theorem: The sum of the terms of a geometric progression a, ar, 
ar2, ..., arn is
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Infinite geometric series

• Infinite geometric series can be computed in the closed form 
for x<1

• How?

• Thus:
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Cardinality

Recall: The cardinality of a finite set is defined by the number of 
elements in the set. 

Definition: The sets A and B have the same cardinality if there is 
a one-to-one correspondence between elements in A and B. In 
other words if there is a bijection from A to B. Recall bijection is 
one-to-one and onto.

Example:  Assume A = {a,b,c} and B = {α,β,γ}
and function f defined as: 

• a  α
• b β
• c  γ

F defines a bijection. Therefore A and B have the same cardinality, 
i.e. | A | = | B | = 3.
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Cardinality

Definition: A set that is either finite or has the same cardinality as 
the set of positive integers Z+ is called countable. A set that is 
not countable is called uncountable.

Why these are called countable? 

• The elements of the set can be enumerated and listed.
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Countable sets

Example:

• Assume A = {0, 2, 4, 6, ... } set of even numbers. Is it 
countable? 

• Using the definition: Is there a bijective function f: Z+  A 

Z+ = {1, 2, 3, 4, …}

• Define a function f:  x  2x - 2 (an arithmetic progression)

• 1  2(1)-2 = 0

• 2  2(2)-2 = 2

• 3  2(3)-2 = 4      ...

• one-to-one (why?) 2x-2 = 2y-2 => 2x = 2y =>x = y.

• onto (why?)   a  A, (a+2) / 2 is the pre-image in Z+.

• Therefore | A | = | Z+ |.
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Countable sets

Theorem: 

• The set of integers Z is countable.

Solution:

Can list a sequence:

0,	1,	െ	1,	2,	െ	2,	3,	െ	3	,………..
Or can define a bijection from Z+ to Z:

– When n is even:    f(n) = n/2
– When n is odd:     f(n) = െ(nെ1)/2

M. HauskrechtCS 441 Discrete mathematics for CS

Countable sets

Definition:

•A rational number can be expressed as the ratio of two integers p
and q such that q ് 0.

– ¾ is a rational number

– √2 is not a rational number.

Theorem: 

•The positive rational numbers are countable.

Solution:

The positive rational numbers are countable since they can be 
arranged in a sequence:

r1 , r2 , r3 ,…
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Countable sets

Theorem: 

• The positive rational numbers are countable.

Constructing  the List

First list p/q with p + q = 2.
Next list p/q with p + q = 3

And so on.

First row q = 1.
Second row q = 2.
etc.
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Cardinality

Theorem: The set of real numbers (R) is an uncountable set.

Proof by a contradiction. 

1) Assume that the real numbers are countable.

2) Then every subset of the reals is countable, in particular, the 
interval from 0 to 1 is countable.  This implies the elements of 
this set can be listed say r1, r2, r3, ... where

• r1 = 0.d11d12d13d14 ...

• r2 = 0.d21d22d23d24 ...

• r3 = 0.d31d32d33d34 ......

• where the dij  {0,1,2,3,4,5,6,7,8,9}. 
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Real numbers are uncountable

Proof cont.
3) Want to show that not all reals in the interval between 0 and 1 

are in this list.
• Form a new number called

– r = 0.d1d2d3d4 ... where
2, if dii  2
3  if dii = 2 

• Example: suppose r1 = 0.75243... d1 = 2
r2 = 0.524310... d2 = 3
r3 = 0.131257... d3 = 2
r4 = 0.9363633... d4 = 2

... ...
rt = 0.23222222... dt = 3

di =
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Real numbers are uncountable

• r = 0.d1d2d3d4 ... where 

2, if dii  2

3  if dii = 2 

• Claim: r is different than each member in the list. 

• Is each expansion unique?  Yes, if we exclude an infinite string 
of 9s.

• _                 _

• Example:   .02850   =   .02849

• Therefore r and ri differ in the i-th decimal place for all i.

di =
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Matrices
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Matrices

Definition:

• A matrix is a rectangular array of numbers. 

• A matrix with m rows and n columns is called an m		x nmatrix. 

Note: The plural of matrix is matrices.

Definitions:  

• A matrix with the same number of rows as columns is called 
square matrix. 

• Two matrices are equal if they have the same number of rows 
and the same number of columns and the corresponding entries 
in every position are equal.
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Matrices

• Let m and n be positive integers and let

• The ith row of A is the 1	 x n	matrix ሾai1, ai2,…,ainሿ. The	jth	
column	of	A is	the	m x 1 matrix:

• The (i,j)th element or entry of A is the  element aij. We can use 
A = [aij ] to denote the matrix with its (i,j)th element equal to aij.
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Matrices

Definition:

Let Aൌ	ሾaijሿ	and B ൌ	ሾbijሿ be m	x nmatrices. The sum of A and B, 
denoted by A + B, is the m	x n matrix	that	has	aij ൅	bij as	its	
ሺi,jሻth element.	In	other	words,	A + B = [aij ൅	bijሿ.

Example:

Note: matrices	of	different	sizes	can	not	be	added.



10

M. HauskrechtCS 441 Discrete mathematics for CS

Matrix multiplication

Definition:

• Let A be an m		x k matrix and B be a k	x n matrix. The 
product of A and B, denoted by AB, is the   m	x n matrix	that	
has	its	ሺi,jሻth element	equal	to	the	sum	of	the	products	of	the	
corresponding	elments from	the	ith row	of	A and	the	jth
column	of	B.		In	other	words,		if	
AB = [cijሿ	then	cijൌ	ai1b1j	൅	ai2b2j ൅	…	൅	akjb2j.

Example:

• The	product	is	not	defined	when	the	number	of	columns	in	the	first	
matrix	is	not	equal	to	the	number	of	rows	in	the	second matrix
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Matrix multiplication

The Product of A = [aijሿ	and	B = [bijሿ	
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Matrix multiplication

Properties of matrix multiplication:

• Does AB = BA?

Example:

• AB:                                                    BA:

• Conclusion: AB ് BA
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Matrices

Definition:

• The identity matrix (of order n) is the n x n matrix In = [ij], 
where ij = 1 if i = j and ij = 0 if i ≠ j.

Properties: 

• Assume A is an m x n matrix. Then: 

AIn ൌ	A    and ImA	ൌ	A
• Assume	A	is	an	n x n matrix. Then: A0		ൌ	In
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Matrices

Definition: Powers of square matrices

• When	A	is	an	n  n matrix, we have:

A0		ൌ	In Ar ൌ	AAA···A

r
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Matrix transpose

Definition:

• Let A = [aij] be an m x n matrix. The transpose of A, denoted 
by AT ,is the n x m matrix obtained by interchanging the rows 
and columns of A.  

If AT = [bij], then  bij = aji for i =1,2,…,n and j = 1,2, ...,m. 
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Symmetric matrix

Definition:

• A square matrix A is called symmetric if  A = AT. 

• Thus A = [aij] is symmetric if  aij = aji for i and j with  1≤ i≤ n
and 1≤ j≤ n. 

• Example:

1     1     0     0

1     0     1     0

0     1     1     1

0      0    1     0

• Is it a symmetric matrix? yes


