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Arithmetic series

Definition: The sum of the terms of the arithmetic progression
a, a+d,a+2d, ..., atnd is called an arithmetic series.

Theorem: The sum of the terms of the arithmetic progression
a, atd,a+2d, ..., a+tnd is

S=Z(a+jd)=na+d2j=na+dn(nT+l)

j=1 i=1
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Geometric series

Definition: The sum of the terms of @ geometric progression a, ar,
ar?, ..., ar* is called a geometric series.

Theorem: The sum of the terms of a geometric progression a, ar,
ar?, ..., ar" is
s ees

n ) n . n+1_
S:Z(ar’):aZr’:a{r 1}
j=0 j=0 I'—l
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Infinite geometric series

+ Infinite geometric series can be computed in the closed form
for x<1

« How?

© k k+1_
S X" =lim, ,, Y x" =tim, ,, 1o L _ 1
r o x—1 x—-1 1-X

» Thus:
> X -
n=0 1 - X
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Cardinality

Recall: The cardinality of a finite set is defined by the number of
elements in the set.

Definition: The sets A and B have the same cardinality if there is
a one-to-one correspondence between elements in A and B. In
other words if there is a bijection from A to B. Recall bijection is
one-to-one and onto.

Example: Assume A = {a,b,c} and B = {a,B,y}
and function f defined as:
ca—>a
*b—op
scoY
F defines a bijection. Therefore A and B have the same cardinality,
ie.|A|=|B|=3.
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Cardinality

Definition: A set that is either finite or has the same cardinality as
the set of positive integers Z* is called countable. A set that is
not countable is called uncountable.

Why these are called countable?
« The elements of the set can be enumerated and listed.
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Countable sets

Example:

* Assume A = {0, 2,4, 6, ... } set of even numbers. Is it
countable?

» Using the definition: Is there a bijective function f: Z* — A
Z+=1{1,2,3,4,...}
* Define a function f: x — 2x - 2 (an arithmetic progression)

c152(1)2=0
«25>202)2=2
«3523)2=4

» one-to-one (why?) 2x-2 =2y-2 =>2x =2y =>x=y.
« onto (why?) Va e A, (at+2)/2 is the pre-image in Z*.
* Therefore | A |=|Z"|.
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Countable sets

Theorem:
» The set of integers Z is countable.

Solution:
Can list a sequence:
0,1,-1,2,-2,3, -3, .ccceun.
Or can define a bijection from Z* to Z:
— When niseven: f(n)=n/2
— Whennisodd: f(n)=—(n-1)/2
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Countable sets

Definition:
*A rational number can be expressed as the ratio of two integers p
and q such that q # 0.

— %, is a rational number

- /2 is not a rational number.

Theorem:
*The positive rational numbers are countable.
Solution:

The positive rational numbers are countable since they can be
arranged in a sequence:

r,r, ...
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Countable sets

Theorem:
» The positive rational numbers are countable.

! i
First row q = 1. 1 f ? ‘:' ?
Second row q = 2. A /
s no 1
etc. s LN 2/ 3 4y s
2 /2 4N s 2
N B 3¥ 4 5
N /3 3
Constructing the List (1 2y 3 4 3
4 4 4 3 3
First list p/q with p + g = 2. N 2 3 4 5
Next list p/q withp + g=3 5 5 5 5 5
And so on. .
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Cardinality

Theorem: The set of real numbers (R) is an uncountable set.

Proof by a contradiction.
1) Assume that the real numbers are countable.

2) Then every subset of the reals is countable, in particular, the
interval from 0 to 1 is countable. This implies the elements of
this set can be listed say r1, r2, r3, ... where

* r1=0.d,,d,,d;5d4 ...

* 12=0.d,,d,,d,;dy, ...

* 13 =0.d;,d;,d53d5, ...

* where the dij e {0,1,2,3,4,5,6,7,8,9}.
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Real numbers are uncountable

Proof cont.

3) Want to show that not all reals in the interval between 0 and 1
are in this list.

e Form a new number called
- r=0.d,d,d;d, ... where

4= 2,ifd; #2
i 3 ifd; =2
» Example: suppose rl =0.75243... dl=2
r2 =0.524310... d2=3
3 =0.131257... d3=2
4 =0.9363633... d4=2
rt =0.23222222... dt=3
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Real numbers are uncountable

* r=0.d,d,d;d, ... where
4= 2,ifd;; #2
i 3 ifd, =2

e Claim: r is different than each member in the list.

* Is each expansion unique? Yes, if we exclude an infinite string
of Os.

« Example: .02850 = .02849
* Therefore r and r; differ in the i-th decimal place for all 1.
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Matrices
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Matrices

Definition:
* A matrix is a rectangular array of numbers.

e A matrix with m rows and n columns is called an /mm x nmatrix.

Note: The plural of matrix is matrices.

Definitions:
* A matrix with the same number of rows as columns is called
square matrix.

» Two matrices are equal if they have the same number of rows
and the same number of columns and the corresponding entries
in every position are equal.
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Matrices

* Let mand n be positive integers and let

a1z ... dip
a921 a9 . a9op

Uml Am2 -+ Omn

* The ithrow of Ais the 1 x nmatrix [, &,...,&;,]- The jth

column of Aisthe m x 1 matrix:
a1;
a2j

Qg

* The (i,))th elementor entry of A is the element a;;. We can use
A = [a;;] to denote the matrix with its (i,j)th element equal to a;.
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Matrices

Definition:

Let A= [a;] and B = [b;] be mx nmatrices. The sum of A and B,
denoted by A + B, is the m x nmatrix that has a; + b;; asits
(2)th element. In other words, A + B = [a;; + by].

Example:

1 0 -1
2 2 =3 | +
3 4 0

Note: matrices of different sizes can not be added.

CS 441 Discrete mathematics for CS M. Hauskrecht




Matrix multiplication

Definition:

* Let Abe an m x k matrix and B be a kx nmatrix. The
product of A and B, denoted by AB, is the mx nmatrix that
has its (i,j)th element equal to the sum of the products of the
corresponding elments from the ith row of A and the jth
column of B. In other words, if

AB = [c;] then ¢; = a;1by; + apby; + ... + aiby;.

Example: .

1

BN == O
LW = b
=
I

4 4 4
1 8 9
0 7 13
2 3 2

o W=

e The product is not defined when the number of columns in the first
matrix is not equal to the number of rows in the second matrix
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Matrix multiplication

The Product of A = [a;] and B = [by]

a a1e . a
au alz alk bt @iz ... by ... bip
21 22 ... 2k bar baa ... by ... bay
B =
A = . . '
11 12 A
br1  br2 br; bien
L @m1 @m2 ... Qmk |
C11 C12 ‘e Cln
a1 Co2 ... Cap
AB = .
Cig
Cml Cm2 --- Cmn

Ciy = (Lﬂblj + (L,jgbgj + -4+ (ij;z)kjj
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Matrix multiplication

Properties of matrix multiplication:
* Does AB =BA?

Example:

1 1 2 1
S B=[1 1]
« AB: BA:

12 2 4 3
AB_{53] BA={32]

e Conclusion: AB #= BA
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Matrices

Definition:
« The identity matrix (of order n) is the n x n matrix I, = [;],
where §; = 1ifi=jand §; =0ifi#].

(10 ... 0

01 0
I, =

[ 00 1]
Properties:

e Assume A is an m x N matrix. Then:
Al,=A and I, A=A
e Assume Aisannxn matrix. Then: A% =1,
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Matrices

Definition: Powers of square matrices
e When A is an n x n matrix, we have:
A'=1, A'=AAA-A

r
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Matrix transpose

Definition:

* Let A=[a;] beanm x n matrix. The transpose of A, denoted
by AT ,is the n X m matrix obtained by interchanging the rows
and columns of A.

If AT = [b;], then by =a;fori=12,..n andj=1.2,..m.

1 2 3 L4
The transpose of the matrix is the matrix | 2 5
4 5 6
3 6
M. Hauskrecht
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Definition:

» A square matrix A is called symmetric if A= AT,

Symmetric matrix

Thus A = [a;] is symmetric if a; = g;; for i and j with 1<i<n

and 1<j<n.
Example:

1
1
0

0

1 0 O
0 1 0
1 1 1
01 0

Is it a symmetric matrix? yes
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