CS 441 Discrete Mathematics for CS Lecture 9

Inverse functions and composition. Sequences.

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 441 Discrete mathematics for CS

M. Hauskrecht

Course administration

Midterm:

- Tuesday, October 6, 2009
- · Closed book, in-class
- Covers Chapters 1 and 2.1-2.3 of the textbook

Homework 4 is out

• Due on Thursday, October 1, 2006

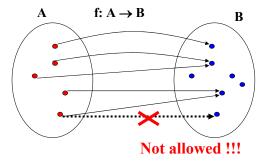
Course web page:

http://www.cs.pitt.edu/~milos/courses/cs441/

CS 441 Discrete mathematics for CS

Functions

Definition: Let A and B be two sets. A function from A to B, denoted f: A → B, is an assignment of exactly one element of B to each element of A. We write f(a) = b to denote the assignment of b to an element a of A by the function f.



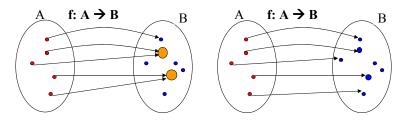
CS 441 Discrete mathematics for CS

M. Hauskrecht

Injective function

<u>Definition</u>: A function f is said to be **one-to-one**, **or injective**, if and only if f(x) = f(y) implies x = y for all x, y in the domain of f. A function is said to be an **injection if it is one-to-one**.

Alternate: A function is one-to-one if and only if $f(x) \neq f(y)$, whenever $x \neq y$. This is the contrapositive of the definition.



Not injective function

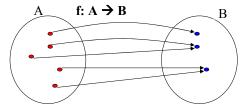
Injective function

CS 441 Discrete mathematics for CS

Surjective function

<u>Definition</u>: A function f from A to B is called **onto**, or **surjective**, if and only if for every $b \in B$ there is an element $a \in A$ such that f(a) = b.

Alternative: all co-domain elements are covered

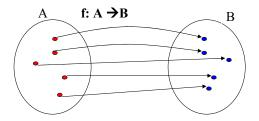


CS 441 Discrete mathematics for CS

M. Hauskrecht

Bijective functions

<u>Definition</u>: A function f is called a bijection if it is both one-to-one and onto.



CS 441 Discrete mathematics for CS

Bijective functions

• Let f be a function from a set A to itself, that is

Assume

- A is finite and f is one-to-one (injective)
- Is f an onto function (surjection)?
- Yes. Every element points to exactly one element. Injection assures they are different. So we have |A| different elements A points to. Since f:A → A the co-domain is covered thus the function is also a surjection (and bijection)
- A is finite and f is an onto function
- Is the function one-to-one?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Bijective functions

• Let f be a function from a set A to itself, that is

$$f: A \rightarrow A$$

Assume

- A is finite and f is one-to-one (injective)
- Is it an onto function (surjection)?
- Yes. Every element points to exactly one element. Injection assures they are different. So we have |A| different elements A points to. Since f: A → A the co-domain is covered thus the function is also a surjection (and bijection)
- · A is finite and f is an onto function
- Is the function one-to-one?
- Yes. Every element maps to exactly one element and all elements in A are covered. Thus the mapping must be one-to-one

CS 441 Discrete mathematics for CS

Functions on real numbers

<u>Definition</u>: Let f1 and f2 be functions from A to \mathbf{R} (reals). Then f1 + f2 and f1 * f2 are also functions from A to \mathbf{R} defined by

•
$$(f1 + f2)(x) = f1(x) + f2(x)$$

•
$$(f1 * f2)(x) = f1(x) * f2(x)$$
.

Examples:

- Assume
 - f1(x) = x 1
 - $f2(x) = x^3 + 1$

then

- $(f1 + f2)(x) = x^3 + x$
- $(f1 * f2)(x) = x^4 x^3 + x 1$.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Increasing and decreasing functions

<u>Definition</u>: A function f whose domain and codomain are subsets of real numbers is **strictly increasing** if f(x) > f(y) whenever x > y and x and y are in the domain of f. Similarly, f is called **strictly decreasing** if f(x) < f(y) whenever x > y and x and y are in the domain of f.

Note: Strictly increasing and strictly decreasing functions are one-to-one.

Example:

• Let $g : \mathbf{R} \to \mathbf{R}$, where g(x) = 2x - 1. Is it increasing?

CS 441 Discrete mathematics for CS

Increasing and decreasing functions

<u>Definition</u>: A function f whose domain and codomain are subsets of real numbers is **strictly increasing** if f(x) > f(y) whenever x > y and x and y are in the domain of f. Similarly, f is called **strictly decreasing** if f(x) < f(y) whenever x > y and x and y are in the domain of f.

Note: Strictly increasing and strictly decreasing functions are one-to-one (injective).

Example:

- Let $g : \mathbf{R} \to \mathbf{R}$, where g(x) = 2x 1. Is it increasing?
- · Proof.

For x>y holds 2x > 2y and subsequently 2x-1 > 2y-1Thus g is strictly increasing.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Identity function

<u>Definition</u>: Let A be a set. The **identity function** on A is the function $i_A: A \rightarrow A$ where $i_A(x) = x$.

Example:

• Let $A = \{1,2,3\}$

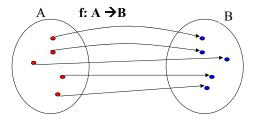
Then:

- $i_A(1) = 1$
- $i_A(2) = 2$
- $i_A(3) = 3$.

CS 441 Discrete mathematics for CS

Bijective functions

<u>Definition</u>: A function f is called a bijection if it is both one-to-one and onto.

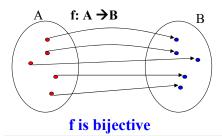


CS 441 Discrete mathematics for CS

M. Hauskrecht

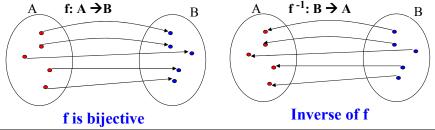
Inverse functions

Definition: Let f be a **bijection** from set A to set B. The **inverse function of f** is the function that assigns to an element b from B the unique element a in A such that f(a) = b. The inverse function of f is denoted by f^{-1} . Hence, $f^{-1}(b) = a$, when f(a) = b. If the inverse function of f exists, f is called **invertible**.



CS 441 Discrete mathematics for CS

<u>Definition</u>: Let f be a **bijection** from set A to set B. The **inverse function of f** is the function that assigns to an element b from B the unique element a in A such that f(a) = b. The inverse function of f is denoted by f^{-1} . Hence, $f^{-1}(b) = a$, when f(a) = b. If the inverse function of f exists, f is called **invertible**.



CS 441 Discrete mathematics for CS

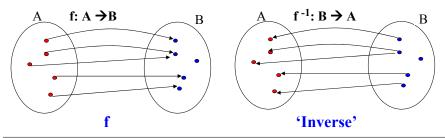
M. Hauskrecht

Inverse functions

Note: if f is not a bijection then it is not possible to define the inverse function of f. **Why?**

Assume f is not one-to-one:

9

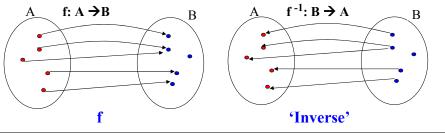


CS 441 Discrete mathematics for CS

Note: if f is not a bijection then it is not possible to define the inverse function of f. **Why?**

Assume f is not one-to-one:

Inverse is not a function. One element of B is mapped to two different elements.



CS 441 Discrete mathematics for CS

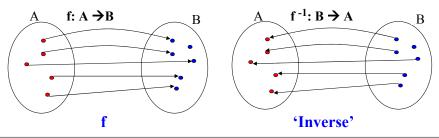
M. Hauskrecht

Inverse functions

Note: if f is not a bijection then it is not possible to define the inverse function of f. Why?

Assume f is not onto:

9

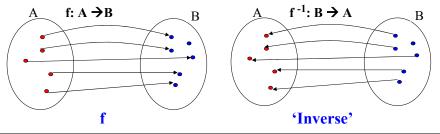


CS 441 Discrete mathematics for CS

Note: if f is not a bijection then it is not possible to define the inverse function of f. Why?

Assume f is not onto:

Inverse is not a function. One element of B is not assigned any value in B.



CS 441 Discrete mathematics for CS

M. Hauskrecht

Inverse functions

Example 1:

• Let $A = \{1,2,3\}$ and i_A be the identity function

$$i_{A}(1) = 1$$

$$i_A^{-1}(1) = 1$$

•
$$i_A(2) = 2$$

$$i_A^{-1}(2) = 2$$

$$i_{A}(3) = 3$$

$$i_A^{-1}(3) = 3$$

• Therefore, the inverse function of i_A is i_A.

Example 2:

- Let $g : \mathbf{R} \to \mathbf{R}$, where g(x) = 2x 1.
- What is the inverse function g-1?

Approach to determine the inverse:

$$y = 2x - 1 \implies y + 1 = 2x$$

=> $(y+1)/2 = x$

• Define $g^{-1}(y) = x = (y+1)/2$

Test the correctness of inverse:

- g(3) = 2*3 1 = 5
- $g^{-1}(5) = (5+1)/2 = 3$
- g(10) = 2*10 1 = 19
- $g^{-1}(19) = (19+1)/2 = 10$.

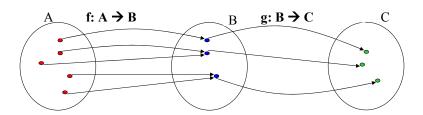
CS 441 Discrete mathematics for CS

M. Hauskrecht

Composition of functions

<u>Definition</u>: Let f be a function from set A to set B and let g be a function from set B to set C. The **composition of the functions g and f**, denoted by g O f is defined by

•
$$(g \circ f)(a) = g(f(a))$$
.



CS 441 Discrete mathematics for CS

Composition of functions

Example 1:

• Let $A = \{1,2,3\}$ and $B = \{a,b,c,d\}$

$$g: A \rightarrow A,$$
 $f: A \rightarrow B$

$$f: A \to B$$

$$1 \rightarrow 3$$

$$1 \rightarrow b$$

$$2 \rightarrow 1$$

$$2 \rightarrow a$$

$$3 \rightarrow 2$$

$$3 \rightarrow d$$

$f \circ g : A \rightarrow B$:

- $1 \rightarrow d$
- $2 \rightarrow b$
- $3 \rightarrow a$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Composition of functions

Example 2:

- Let f and g be function from Z into Z, where
- f(x) = 2x and $g(x) = x^2$.
- $f \circ g : Z \rightarrow Z$

•
$$(f \circ g)(x) = f(g(x))$$

$$= f(x^2)$$

$$=$$
 2(x²)

- $g \circ f: Z \to Z$
- $(g \circ f)(x) =$ g(f(x))

$$=$$
 $g(2x)$

$$=$$
 $(2x)^2$

$$=$$
 $4x^2$

CS 441 Discrete mathematics for CS

Composition of functions

Example 3:

- $(f \circ f^{-1})(x) = x$ and $(f^{-1} \circ f)(x) = x$, for all x.
- Let $f: \mathbf{R} \to \mathbf{R}$, where f(x) = 2x 1 and $f^{-1}(x) = (x+1)/2$.

•
$$(f \circ f^{-1})(x) = f(f^{-1}(x))$$

= $f((x+1)/2)$
= $2((x+1)/2) - 1$
= $(x+1) - 1$
= x

•
$$(f^{-1} \circ f)(x) = f^{-1}(f(x))$$

= $f^{-1}(2x - 1)$
= $(2x)/2$
= x

CS 441 Discrete mathematics for CS

M. Hauskrecht

Some functions

Definitions:

- The floor function assigns a real number x the largest integer that is less than or equal to x. The floor function is denoted by \[\ x \].
- The **ceiling function** assigns to the real number x the smallest integer that is greater than or equal to x. The ceiling function is denoted by \[\times \].

Other important functions:

• Factorials: n! = n(n-1) such that 1! = 1

CS 441 Discrete mathematics for CS

Sequences and summations

CS 441 Discrete mathematics for CS

M. Hauskrecht

Sequences

Definition: A **sequence** is a function from a subset of the set of integers (typically the set $\{0,1,2,...\}$ or the set $\{1,2,3,...\}$ to a set S. We use the notation a_n to denote the image of the integer n. We call a_n a term of the sequence.

Notation: $\{a_n\}$ is used to represent the sequence (note $\{\}$ is the same notation used for sets, so be careful). $\{a_n\}$ represents the ordered list a_1, a_2, a_3, \dots

CS 441 Discrete mathematics for CS

Sequences

Examples:

- (1) $a_n = n^2$, where n = 1,2,3...
 - What are the elements of the sequence? 1, 4, 9, 16, 25, ...
- (2) $a_n = (-1)^n$, where n=0,1,2,3,...
 - Elements of the sequence?

- 3) $a_n = 2^n$, where n=0,1,2,3,...
 - Elements of the sequence?

1, 2, 4, 8, 16, 32, ...

CS 441 Discrete mathematics for CS

M. Hauskrecht

Arithmetic progression

Definition: An **arithmetic progression** is a sequence of the form a, a+d,a+2d, ..., a+nd

where a is the *initial term* and d is *common difference*, such that both belong to R.

Example:

- $s_n = -1+4n$ for n=0,1,2,3,...
- members: -1, 3, 7, 11, ...

CS 441 Discrete mathematics for CS

Geometric progression

<u>Definition</u> A **geometric progression** is a sequence of the form:

$$a, ar, ar^2, ..., ar^k,$$

where a is the *initial term*, and r is the *common ratio*. Both a and r belong to R.

Example:

• $a_n = (\frac{1}{2})^n$ for n = 0,1,2,3,...members: $1,\frac{1}{2},\frac{1}{4},\frac{1}{8},...$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Sequences

• Given a sequence finding a rule for generating the sequence is not always straightforward

Example:

- Assume the sequence: 1,3,5,7,9,
- What is the formula for the sequence?
- Each term is obtained by adding 2 to the previous term.
- 1, 1+2=3, 3+2=5, 5+2=7
- It suggests an arithmetic progression: a+nd with a=1 and d=2
 - $a_n = 1 + 2n$ or $a_n = 1 + 2n$

CS 441 Discrete mathematics for CS

Sequences

• Given a sequence finding a rule for generating the sequence is not always straightforward

Example 2:

- Assume the sequence: 1, 1/3, 1/9, 1/27, ...
- What is the sequence?
- The denominators are powers of 3.

1,
$$1/3 = 1/3$$
, $(1/3)/3 = 1/(3*3) = 1/9$, $(1/9)/3 = 1/27$

- This suggests a geometric progression: ark with a=1 and r=1/3
 - (1/3)ⁿ

CS 441 Discrete mathematics for CS