CS 441 Discrete Mathematics for CS Lecture 23

Relations III.

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 441 Discrete mathematics for CS

M. Hauskrecht

Closures on relations

- Relations can have different properties:
 - reflexive,
 - symmetric
 - transitive
- Because of that we can have:
 - symmetric,
 - reflexive and
 - transitive

closures.

CS 441 Discrete mathematics for CS

Closures

Definition: Let R be a relation on a set A. A relation S on A with property P is called **the closure of R with respect to P** if S is a subset of every relation Q (S \subseteq Q) with property P that contains R (R \subseteq Q).

CS 441 Discrete mathematics for CS

M. Hauskrecht

Closures

Definition: Let R be a relation on a set A. A relation S on A with property P is called **the closure of R with respect to P** if S is a subset of every relation Q ($S \subseteq Q$) with property P that contains R ($R \subseteq Q$).

Example (symmetric closure):

- Assume $R=\{(1,2),(1,3),(2,2)\}$ on $A=\{1,2,3\}$.
- What is the symmetric closure S of R?
- S=?

CS 441 Discrete mathematics for CS

Closures

Definition: Let R be a relation on a set A. A relation S on A with property P is called **the closure of R with respect to P** if S is a subset of every relation Q (S \subseteq Q) with property P that contains R (R \subseteq Q).

Example (a symmetric closure):

- Assume $R=\{(1,2),(1,3),(2,2)\}$ on $A=\{1,2,3\}$.
- What is the symmetric closure S of R?
- $S = \{(1,2),(1,3),(2,2)\} \cup \{(2,1),(3,1)\}$ = $\{(1,2),(1,3),(2,2),(2,1),(3,1)\}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Closures

Definition: Let R be a relation on a set A. A relation S on A with property P is called **the closure of R with respect to P** if S is a subset of every relation Q (S \subseteq Q) with property P that contains R (R \subset Q).

Example (transitive closure):

- Assume $R=\{(1,2), (2,2), (2,3)\}$ on $A=\{1,2,3\}$.
- Is R transitive?

CS 441 Discrete mathematics for CS

Closures

Definition: Let R be a relation on a set A. A relation S on A with property P is called **the closure of R with respect to P** if S is a subset of every relation Q (S \subseteq Q) with property P that contains R (R \subseteq Q).

Example (transitive closure):

- Assume $R=\{(1,2), (2,2), (2,3)\}$ on $A=\{1,2,3\}$.
- Is R transitive? No.
- How to make it transitive?
- S = ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Closures

Definition: Let R be a relation on a set A. A relation S on A with property P is called **the closure of R with respect to P** if S is a subset of every relation Q (S \subseteq Q) with property P that contains R (R \subset Q).

Example (transitive closure):

- Assume $R=\{(1,2), (2,2), (2,3)\}$ on $A=\{1,2,3\}$.
- Is R transitive? No.
- How to make it transitive?
- $S = \{(1,2), (2,2), (2,3)\} \cup \{(1,3)\}$ = $\{(1,2), (2,2), (2,3), (1,3)\}$
- S is the transitive closure of R

CS 441 Discrete mathematics for CS

Transitive closure

We can represent the relation on the graph. Finding a transitive closure corresponds to finding all pairs of elements that are connected with a directed path (or digraph).

Example:

Assume $R=\{(1,2), (2,2), (2,3)\}$ on $A=\{1,2,3\}$. Transitive closure $S=\{(1,2), (2,2), (2,3), (1,3)\}$.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Transitive closure

We can represent the relation on the graph. Finding a transitive closure corresponds to finding all pairs of elements that are connected with a directed path (or digraph).

Example:

Assume R= $\{(1,2), (2,2), (2,3)\}$ on A= $\{1,2,3\}$. Transitive closure S = $\{(1,2), (2,2), (2,3), (1,3)\}$.

CS 441 Discrete mathematics for CS

Transitive closure

We can represent the relation on the graph. Finding a transitive closure corresponds to finding all pairs of elements that are connected with a directed path (or digraph).

Example:

Assume R= $\{(1,2), (2,2), (2,3)\}\$ on A= $\{1,2,3\}$. Transitive closure S = $\{(1,2), (2,2), (2,3), (1,3)\}$.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Transitive closure

Theorem: Let R be a relation on a set A. There is a path of length n from a to b if and only if $(a,b) \in R^n$.

Proof (math induction):

Path of length 1

Path of length n+1

CS 441 Discrete mathematics for CS

Transitive closure

Theorem: Let R be a relation on a set A. There is a path of length n from a to b if and only if $(a,b) \in R^n$.

Proof (math induction):

- **P(1):** There is a path of length 1 from a to b if and only if $(a,b) \in R^1$, by the definition of R.
- Show $P(n) \rightarrow P(n+1)$: Assume there is a path of length n from a to b if and only if $(a,b) \in \mathbb{R}^n \rightarrow$ there is a path of length n+1 from a to b if and only if $(a,b) \in \mathbb{R}^{n+1}$.
- There is a path of length n+1 from a to b if and only if there exists an x ∈ A, such that (a,x) ∈ R (a path of length 1) and (x,b) ∈ Rⁿ is a path of length n from x to b.

• $(x,b) \in R^n$ holds due to P(n). Therefore, there is a path of length n+1 from a to b. This also implies that $(a,b) \in R^{n+1}$.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Connectivity relation

Definition: Let R be a relation on a set A. The **connectivity relation** R* consists of all pairs (a,b) such that there is a path (of any length, ie. 1 or 2 or 3 or ...) between a and b in R.

$$R^* = \bigcup_{k=1}^{\infty} R^k$$

Example:

- $A = \{1,2,3,4\}$
- $R = \{(1,2),(1,4),(2,3),(3,4)\}$

$$\begin{array}{cccc}
1 & \longrightarrow & 2 \\
\downarrow & & \downarrow & 2 \\
2 & \longrightarrow & 3
\end{array}$$

Connectivity relation

Definition: Let R be a relation on a set A. The **connectivity relation** R* consists of all pairs (a,b) such that there is a path (of any length, ie. 1 or 2 or 3 or ...) between a and b in R.

$$R^* = \bigcup_{k=1}^{\infty} R^k$$

Example:

- $A = \{1,2,3,4\}$
- $R = \{(1,2),(1,4),(2,3),(3,4)\}$
- $R^2 = ?$

.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Connectivity relation

Definition: Let R be a relation on a set A. The **connectivity relation** R* consists of all pairs (a,b) such that there is a path (of any length, ie. 1 or 2 or 3 or ...) between a and b in R.

$$R^* = \bigcup_{k=1}^{\infty} R^k$$

Example:

- $A = \{1,2,3,4\}$
- $R = \{(1,2),(1,4),(2,3),(3,4)\}$
- $R^2 = \{(1,3),(2,4)\}$
- $R^3 = ?$

.

$$\begin{array}{cccc}
1 & \longrightarrow & 4 \\
\downarrow & & \uparrow \\
2 & \longrightarrow & 3
\end{array}$$

Connectivity relation

Definition: Let R be a relation on a set A. The **connectivity** relation R* consists of all pairs (a,b) such that there is a path (of any length, ie. 1 or 2 or 3 or ...) between a and b in R.

$$R^* = \bigcup_{k=1}^{\infty} R^k$$

Example:

- $A = \{1,2,3,4\}$
- $R = \{(1,2),(1,4),(2,3),(3,4)\}$
- $R^2 = \{(1,3),(2,4)\}$
- $R^3 = \{(1,4)\}$
- $R^4 = ?$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Connectivity relation

Definition: Let R be a relation on a set A. The **connectivity** relation R* consists of all pairs (a,b) such that there is a path (of any length, ie. 1 or 2 or 3 or ...) between a and b in R.

$$R^* = \bigcup_{k=1}^{\infty} R^k$$

Example:

- $A = \{1,2,3,4\}$
- $R = \{(1,2),(1,4),(2,3),(3,4)\}$
- $R^2 = \{(1,3),(2,4)\}$
- $R^3 = \{(1,4)\}$
- $R^4 = \emptyset$
- ...R* = ?

$$\begin{array}{ccc}
1 & \longrightarrow & 4 \\
\downarrow & & \uparrow \\
2 & \longrightarrow & 3
\end{array}$$

CS 441 Discrete mathematics for CS

Connectivity relation

Definition: Let R be a relation on a set A. The **connectivity relation** R* consists of all pairs (a,b) such that there is a path (of any length, ie. 1 or 2 or 3 or ...) between a and b in R.

$$R^* = \bigcup_{k=1}^{\infty} R^k$$

Example:

- $A = \{1,2,3,4\}$
- $R = \{(1,2),(1,4),(2,3),(3,4)\}$
- $R^2 = \{(1,3),(2,4)\}$
- $R^3 = \{(1,4)\}$
- $R^4 = \emptyset$
- •
- $R^* = \{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Transitivity closure and connectivity relation

<u>Theorem:</u> The transitive closure of a relation R equals the connectivity relation R*.

Based on the following Lemma.

Lemma 1: Let A be a set with n elements, and R a relation on A. If there is a path from a to b, then there exists a path of length < n in between (a,b). Consequently:

$$R^* = \bigcup_{k=1}^n R^k$$

CS 441 Discrete mathematics for CS

Connectivity

Lemma 1: Let A be a set with n elements, and R a relation on A. If there is a path from a to b, then there exists a path of length < n in between (a,b). Consequently:

$$R^* = \bigcup_{k=1}^n R^k$$

Proof (intuition):

• There are at most n different elements we can visit on a path if the path does not have loops

 Loops may increase the length but the same node is visited more than once

CS 441 Discrete mathematics for CS

M. Hauskrecht

Connectivity

Lemma 1: Let A be a set with n elements, and R a relation on A. If there is a path from a to b, then there exists a path of length < n in between (a,b). Consequently:

$$R^* = \bigcup_{k=1}^n R^k$$

Proof (intuition):

• There are at most n different elements we can visit on a path if the path does not have loops

• Loops may increase the length but the same node is visited more than once

CS 441 Discrete mathematics for CS

Definition: A relation R on a set A is called an **equivalence relation** if it is reflexive, symmetric and transitive.

Example: Let $A = \{0,1,2,3,4,5,6\}$ and

- $R = \{(a,b) | a,b \in A, a \equiv b \mod 3\}$ (a is congruent to b modulo 3) Congruencies:
- $0 \mod 3 = ?$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Equivalence relation

Definition: A relation R on a set A is called an **equivalence relation** if it is reflexive, symmetric and transitive.

Example: Let $A = \{0,1,2,3,4,5,6\}$ and

• R= $\{(a,b)| a,b \in A, a \equiv b \mod 3\}$ (a is congruent to b modulo 3)

Congruencies:

• $0 \mod 3 = 0$ $1 \mod 3 = ?$

CS 441 Discrete mathematics for CS

Definition: A relation R on a set A is called an equivalence **relation** if it is reflexive, symmetric and transitive.

Example: Let $A = \{0,1,2,3,4,5,6\}$ and

- $R = \{(a,b) | a,b \in A, a \equiv b \mod 3\}$ (a is congruent to b modulo 3) **Congruencies:**
- $0 \mod 3 = 0$ $1 \mod 3 = 1$ $2 \mod 3 = 2$ $3 \mod 3 = ?$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Equivalence relation

Definition: A relation R on a set A is called an **equivalence relation** if it is reflexive, symmetric and transitive.

Example: Let $A = \{0,1,2,3,4,5,6\}$ and

- $R = \{(a,b) | a,b \in A, a \equiv b \mod 3\}$ (a is congruent to b modulo 3)
- **Congruencies:**
- $0 \mod 3 = 0$ $1 \mod 3 = 1$ $2 \mod 3 = 2$ $3 \mod 3 = 0$
- $4 \mod 3 = ?$

CS 441 Discrete mathematics for CS

Definition: A relation R on a set A is called an **equivalence relation** if it is reflexive, symmetric and transitive.

Example: Let $A = \{0,1,2,3,4,5,6\}$ and

- $R = \{(a,b) | a,b \in A, a \equiv b \mod 3\}$ (a is congruent to b modulo 3) Congruencies:
- $0 \mod 3 = 0$ $1 \mod 3 = 1$ $2 \mod 3 = 2$ $3 \mod 3 = 0$
- $4 \mod 3 = 1$ $5 \mod 3 = 2$ $6 \mod 3 = 0$

Relation R has the following pairs:

?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Equivalence relation

Definition: A relation R on a set A is called an **equivalence relation** if it is reflexive, symmetric and transitive.

Example: Let $A = \{0,1,2,3,4,5,6\}$ and

- $R = \{(a,b) | a,b \in A, a \equiv b \mod 3\}$ (a is congruent to b modulo 3)
- **Congruencies:** 0 mod 3 = 0
- $1 \mod 3 = 1$
- $2 \mod 3 = 2 \mod 3 = 0$

- $4 \mod 3 = 1$
- $5 \mod 3 = 2$
- $6 \mod 3 = 0$
- Relation R has the following pairs:
- (0,0)

- (0,3), (3,0), (0,6), (6,0)
- (3,3), (3,6) (6,3), (6,6)
- (1,1),(1,4),(4,1),(4,4)
- (2,2), (2,5), (5,2), (5,5)

CS 441 Discrete mathematics for CS

• Relation R on A={0,1,2,3,4,5,6} has the following pairs:

(0,0)

(3,3), (3,6), (6,3), (6,6)

(1,1),(1,4),(4,1),(4,4)

(2,2), (2,5), (5,2), (5,5)

• Is R reflexive?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Equivalence relation

• Relation R on A={0,1,2,3,4,5,6} has the following pairs:

(0,0)

(3,3), (3,6) (6,3), (6,6)

(1,1),(1,4),(4,1),(4,4)

(2,2), (2,5), (5,2), (5,5)

- Is R reflexive? Yes.
- Is R symmetric?

CS 441 Discrete mathematics for CS

• Relation R on A={0,1,2,3,4,5,6} has the following pairs:

(0,0)

(0,3), (3,0), (0,6), (6,0)

(3,3), (3,6), (6,3), (6,6)

(1,1),(1,4),(4,1),(4,4)

(2,2), (2,5), (5,2), (5,5)

- Is R reflexive? Yes.
- Is R symmetric? Yes.
- Is R transitive?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Equivalence relation

• Relation R on A={0,1,2,3,4,5,6} has the following pairs:

(0,0)

(0,3), (3,0), (0,6), (6,0)

(3,3), (3,6) (6,3), (6,6)

(1,1),(1,4),(4,1),(4,4)

(2,2), (2,5), (5,2), (5,5)

- Is R reflexive? Yes.
- Is R symmetric? Yes.
- Is R transitive. Yes.

Then

• R is an equivalence relation.

CS 441 Discrete mathematics for CS

Definition: Let R be an equivalence relation on a set A. The set $\{x \in A \mid a R x\}$ is called **the equivalence class of a**, denoted by $[a]_R$ or simply [a] when there is only one relation R. If $b \in [a]$ then b is called **a representative of this equivalence class**.

Example:

- Assume $R = \{(a,b) \mid a \equiv b \mod 3\}$ for $A = \{0,1,2,3,4,5,6\}$
- Pick an element a =0.
- $[0]_R = \{0,3,6\}$
- Element 1: $[1]_R = ?$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Equivalence class

Definition: Let R be an equivalence relation on a set A. The set $\{x \in A \mid a R x\}$ is called **the equivalence class of a,** denoted by $[a]_R$ or simply [a] when there is only one relation R. If $b \in [a]$ then b is called **a representative of this equivalence class**.

Example:

- Assume $R = \{(a,b) \mid a \equiv b \mod 3\}$ for $A = \{0,1,2,3,4,5,6\}$
- Pick an element a =0.
- $[0]_R = \{0,3,6\}$
- Element 1: $[1]_R = \{1,4\}$
- Element 2: $[2]_R = ?$

CS 441 Discrete mathematics for CS

Definition: Let R be an equivalence relation on a set A. The set $\{x \in A \mid a R x\}$ is called **the equivalence class of a**, denoted by $[a]_R$ or simply [a] when there is only one relation R. If $b \in [a]$ then b is called **a representative of this equivalence class**.

Example:

- Assume $R = \{(a,b) \mid a \equiv b \mod 3\}$ for $A = \{0,1,2,3,4,5,6\}$
- Pick an element a = 0.
- $[0]_R = \{0,3,6\}$
- Element 1: $[1]_R = \{1,4\}$
- Element 2: $[2]_R = \{2,5\}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Equivalence class

Definition: Let R be an equivalence relation on a set A. The set $\{x \in A \mid a R x\}$ is called **the equivalence class of a,** denoted by $[a]_R$ or simply [a] when there is only one relation R. If $b \in [a]$ then b is called **a representative of this equivalence class**.

Example:

- Assume $R = \{(a,b) \mid a \equiv b \mod 3\}$ for $A = \{0,1,2,3,4,5,6\}$
- Pick an element a =0.
- $[0]_R = \{0,3,6\}$
- Element 1: $[1]_R = \{1,4\}$
- Element 2: $[2]_R = \{2,5\}$
- Element 3: $[3]_R = ?$

CS 441 Discrete mathematics for CS

Definition: Let R be an equivalence relation on a set A. The set $\{x \in A \mid a \in R \}$ is called **the equivalence class of a**, denoted by $[a]_R$ or simply [a] when there is only one relation R. If $b \in [a]$ then b is called **a representative of this equivalence class**.

Example:

- Assume $R = \{(a,b) \mid a \equiv b \mod 3\}$ for $A = \{0,1,2,3,4,5,6\}$
- Pick an element a =0.
- $[0]_R = \{0,3,6\}$
- Element 1: $[1]_R = \{1,4\}$
- Element 2: $[2]_R = \{2,5\}$
- Element 3: $[3]_R = \{0,3,6\} = [0]_R$
- Element 4: $[4]_R = ?$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Equivalence class

Definition: Let R be an equivalence relation on a set A. The set $\{x \in A \mid a R x\}$ is called **the equivalence class of a,** denoted by $[a]_R$ or simply [a] when there is only one relation R. If $b \in [a]$ then b is called a representative of this equivalence class.

Example:

- Assume $R = \{(a,b) \mid a \equiv b \mod 3\}$ for $A = \{0,1,2,3,4,5,6\}$
- Pick an element a =0.
- $[0]_R = \{0,3,6\}$
- Element 1: $[1]_R = \{1,4\}$
- Element 2: $[2]_R = \{2,5\}$
- Element 3: $[3]_R = \{0,3,6\} = [0]_R$
- Element 4: $[4]_R = \{1,4\} = [1]_R$
- Element 5: $[5]_R = ?$

CS 441 Discrete mathematics for CS M. Hauskrecht

Definition: Let R be an equivalence relation on a set A. The set $\{x \in A \mid a R x\}$ is called **the equivalence class of a,** denoted by $[a]_R$ or simply [a] when there is only one relation R. If $b \in [a]$ then b is called a **representative of this equivalence class**.

Example:

- Assume $R = \{(a,b) \mid a \equiv b \mod 3\}$ for $A = \{0,1,2,3,4,5,6\}$
- Pick an element a =0.
- $[0]_R = \{0,3,6\}$
- Element 1: $[1]_R = \{1,4\}$
- Element 2: $[2]_R = \{2,5\}$
- Element 3: $[3]_R = \{0,3,6\} = [0]_R$
- Element 4: $[4]_R = \{1,4\} = [1]_R$
- Element 5: $[5]_R = \{2,5\} = [2]_R$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Equivalence class

Definition: Let R be an equivalence relation on a set A. The set $\{x \in A \mid a \mid x\}$ is called **the equivalence class of a,** denoted by $[a]_R$ or simply [a] when there is only one relation R. If $b \in [a]$ then b is called **a representative of this equivalence class**.

Example:

- Assume $R = \{(a,b) \mid a \equiv b \mod 3\}$ for $A = \{0,1,2,3,4,5,6\}$
- Pick an element a =0.
- $[0]_R = \{0,3,6\}$
- Element 1: $[1]_R = \{1,4\}$
- Element 2: $[2]_R = \{2,5\}$
- Element 3: $[3]_R = \{0,3,6\} = [0]_R = [6]_R$
- Element 4: $[4]_R = \{1,4\} = [1]_R$
- Element 5: $[5]_R = \{2,5\} = [2]_R$

CS 441 Discrete mathematics for CS

Example:

• Assume $R=\{(a,b) \mid a \equiv b \mod 3\}$ for $A=\{0,1,2,3,4,5,6\}$

Three different equivalence classes all together:

- $[0]_R = [3]_R = [6]_R = \{0,3,6\}$
- $[1]_R = [4]_R = \{1,4\}$
- $[2]_R = [5]_R = \{2,5\}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Partition of a set S

Definition: Let S be a set. A collection of nonempty subsets of S $A_1, A_2, ..., A_k$ is called a partition of S if:

•
$$A_i \cap A_j = \emptyset$$
, $i \neq j$ and $S = \bigcup_{i=1}^k A_i$

Example: Let $S=\{1,2,3,4,5,6\}$ and

- $A_1 = \{0,3,6\}$ $A_2 = \{1,4\}$ $A_3 = \{2,5\}$
- Is A₁, A₂, A₃ a partition of S?

CS 441 Discrete mathematics for CS

Partition of a set S

Definition: Let S be a set. A collection of nonempty subsets of S $A_1, A_2, ..., A_k$ is called a partition of S if:

•
$$A_i \cap A_j = \emptyset$$
, $i \neq j$ and $S = \bigcup_{i=1}^k A_i$

Example: Let $S = \{1,2,3,4,5,6\}$ and

- $A_1 = \{0,3,6\}$ $A_2 = \{1,4\}$ $A_3 = \{2,5\}$

- Is A_1 , A_2 , A_3 a partition of S? Yes.
- Give a partition of S?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Partition of a set S

Definition: Let S be a set. A collection of nonempty subsets of S $A_1, A_2, ..., A_k$ is called a partition of S if:

•
$$A_i \cap A_j = \emptyset$$
, $i \neq j$ and $S = \bigcup_{i=1}^k A_i$

Example: Let $S=\{1,2,3,4,5,6\}$ and

- $A_1 = \{0,3,6\}$ $A_2 = \{1,4\}$ $A_3 = \{2,5\}$
- Is A₁, A₂, A₃ a partition of S? Yes.
- Give a partition of S?
- {0,2,4,6} {1,3,5}
- {0} {1,2} {3,4,5} {6}

CS 441 Discrete mathematics for CS

Theorem: Let R be an **equivalence relation** on a set A. The following statements are equivalent:

- i) a R b
- ii) [a] = [b]
- iii) $[a] \cap [b] \neq \emptyset$.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Equivalence class

Theorem: Let R be an **equivalence relation** on a set A. The following statements are equivalent:

- i) a R b
- ii) [a] = [b]
- iii) [a] \cap [b] $\neq \emptyset$.

Proof: (i) \rightarrow (ii)

- Suppose $\mathbf{a} \mathbf{R} \mathbf{b}$, i.e., $(\mathbf{a}, \mathbf{b}) \in \mathbf{R}$. Want to show $[\mathbf{a}] = [\mathbf{b}]$.
- Let $\mathbf{x} \in [\mathbf{a}] \to (\mathbf{a}, \mathbf{x}) \in \mathbf{R}$.
- Since R is symmetric $(b,a) \in R$.
- Since R is transitive, $(b,a) \in R$ and $(a,x) \in R \to (b,x) \in R$. Thus, $x \in [b]$.
- Let $\mathbf{x} \in [\mathbf{b}] \to (\mathbf{b}, \mathbf{x}) \in \mathbf{R}$.
- Since R is transitive, $(a,b) \in R$ and $(b,x) \in R \rightarrow (a,x) \in R$. Thus $x \in [a]$.
- Therefore [a] = [b].

CS 441 Discrete mathematics for CS

Theorem: Let R be an **equivalence relation** on a set A. The following statements are equivalent:

- i) a R b
- ii) [a] = [b]
- iii) $[a] \cap [b] \neq \emptyset$.

Proof: (ii) \rightarrow (iii)

- Suppose [a] = [b]. Want to show [a] \cap [b] $\neq \emptyset$.
- Since R is reflexive, $a \in [a] \rightarrow [a] \neq \emptyset$ and the result follows.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Equivalence class

Theorem: Let R be an **equivalence relation** on a set A. The following statements are equivalent:

- i) a R b
- ii) [a] = [b]
- iii) $[a] \cap [b] \neq \emptyset$.

Proof: (iii) \rightarrow (i)

- Suppose $[a] \cap [b] \neq \emptyset$, want to show a R b.
- $[a] \cap [b] \neq \emptyset \rightarrow x \in [a] \cap [b] \rightarrow x \in [a]$ and $x \in [b] \rightarrow (a,x)$ and $(b,x) \in R$.
- Since R is symmetric $(x,b) \in R$. By the transitivity of R $(a,x) \in R$ and $(x,b) \in R$ implies $(a,b) \in R \to a R b$.

CS 441 Discrete mathematics for CS