CS 441 Discrete Mathematics for CS Lecture 22

Relations II.

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 441 Discrete mathematics for CS

M. Hauskrecht

Combining relations

<u>Definition:</u> Let A and B be sets. A **binary relation from A to B** is **a subset** of a Cartesian product A x B.

or $R \subseteq A \times B$ means R is a set of ordered pairs of the form (a,b) where $a \in A$ and $b \in B$.

Combining Relations

- Relations are sets → combinations via set operations
- Set operations of: union, intersection, difference and symmetric difference.

CS 441 Discrete mathematics for CS

Combining relations

Example:

- Let $A = \{1,2,3\}$ and $B = \{u,v\}$ and
- $R1 = \{(1,u), (2,u), (2,v), (3,u)\}$
- $R2 = \{(1,v),(3,u),(3,v)\}$

What is:

- R1 \cup R2 = {(1,u),(1,v),(2,u),(2,v),(3,u),(3,v)}
- $R1 \cap R2 = \{(3,u)\}$
- R1 R2 = $\{(1,u),(2,u),(2,v)\}$
- R2 R1 = $\{(1,v),(3,v)\}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Combination of relations

 Can the relation formed by taking the union or intersection or composition of two relations R1 and R2 be represented in terms of matrix operations? Yes

CS 441 Discrete mathematics for CS

Union: matrix implementation

Definition. The **join**, denoted by \vee , of two m-by-n matrices (a_{ij}) and (b_{ii}) of 0s and 1s is an m-by-n matrix (m_{ii}) where

- $\bullet \ m_{ij} \ = \ a_{ij} \ \lor \ b_{ij} \qquad \ \ \text{for all } i,j$
- = pairwise or (disjunction)
- Example:
- Let $A = \{1,2,3\}$ and $B = \{u,v\}$ and
- $R1 = \{(1,u), (2,u), (2,v), (3,u)\}$
- R2 = $\{(1,v),(3,u),(3,v)\}$
- MR1 = 1 0 MR2 = 0 1 M(R1 \vee R2)= 1 1 1 1 0 0 1 1 1

CS 441 Discrete mathematics for CS

M. Hauskrecht

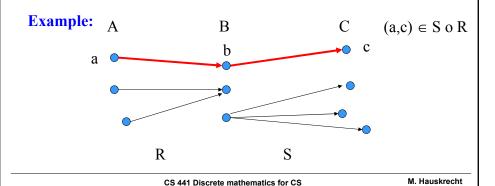
Intersection: matrix implementation

Definition. The **meet**, denoted by \land , of two m-by-n matrices (a_{ij}) and (b_{ij}) of 0s and 1s is an m-by-n matrix (m_{ij}) where

- $m_{ij} = a_{ij} \wedge b_{ij}$ for all i,j
- = pairwise and (conjunction)
- Example:
- Let $A = \{1,2,3\}$ and $B = \{u,v\}$ and
- R1 = $\{(1,u), (2,u), (2,v), (3,u)\}$
- R2 = $\{(1,v),(3,u),(3,v)\}$
- MR1 = 1 0 MR2 = 0 1 MR1 \wedge MR2 = 0 0 1 1 0 0 0 0 0 1 0 0

CS 441 Discrete mathematics for CS

Definition: Let R be a relation from a set A to a set B and S a relation from B to a set C. The **composite of R and S** is the relation consisting of the ordered pairs (a,c) where a ∈ A and c ∈ C, and for which there is a b ∈ B such that (a,b) ∈ R and (b,c) ∈ S. We denote the composite of R and S by S o R.



Composite of relations

Definition: Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of the ordered pairs (a,c) where a ∈ A and c ∈ C, and for which there is a b ∈ B such that (a,b) ∈ R and (b,c) ∈ S. We denote the composite of R and S by S o R.

Examples:

- Let $A = \{1,2,3\}$, $B = \{0,1,2\}$ and $C = \{a,b\}$.
- $R = \{(1,0), (1,2), (3,1), (3,2)\}$
- $S = \{(0,b),(1,a),(2,b)\}$
- $S \circ R = ?$

CS 441 Discrete mathematics for CS

Definition: Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of the ordered pairs (a,c) where a ∈ A and c ∈ C, and for which there is a b ∈ B such that (a,b) ∈ R and (b,c) ∈ S. We denote the composite of R and S by S o R.

Example:

- Let $A = \{1,2,3\}$, $B = \{0,1,2\}$ and $C = \{a,b\}$.
- $R = \{(1,0), (1,2), (3,1), (3,2)\}$
- $S = \{(0,b),(1,a),(2,b)\}$
- S o R = $\{(1,b),(3,a),(3,b)\}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Composite: matrix implementation

Definition. The **Boolean product**, **denoted by \odot**, of an m-by-n matrix (a_{ij}) and n-by-p matrix (b_{jk}) of 0s and 1s is an m-by-p matrix (m_{ik}) where

• $m_{ik} = 1$, if $a_{ij} = 1$ and $b_{jk} = 1$ for some k=1,2,...,n0, otherwise

Examples:

- Let $A = \{1,2,3\}$, $B = \{0,1,2\}$ and $C = \{a,b\}$.
- $R = \{(1,0), (1,2), (3,1), (3,2)\}$
- $S = \{(0,b),(1,a),(2,b)\}$
- S o R = $\{(1,b),(3,a),(3,b)\}$

CS 441 Discrete mathematics for CS

Examples:

- Let $A = \{1,2\}, \{1,2,3\} C = \{a,b\}$
- $R = \{(1,2),(1,3),(2,1)\}$ is a relation from A to B
- $S = \{(1,a),(3,b),(3,a)\}$ is a relation from B to C.
- S o R = $\{(1,b),(1,a),(2,a)\}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Implementation of composite

Examples:

- Let $A = \{1,2\}, \{1,2,3\} C = \{a,b\}$
- $R = \{(1,2),(1,3),(2,1)\}$ is a relation from A to B
- $S = \{(1,a),(3,b),(3,a)\}$ is a relation from B to C.
- S o R = $\{(1,b),(1,a),(2,a)\}$

CS 441 Discrete mathematics for CS

Examples:

- Let $A = \{1,2\}, \{1,2,3\} C = \{a,b\}$
- $R = \{(1,2),(1,3),(2,1)\}$ is a relation from A to B
- $S = \{(1,a),(3,b),(3,a)\}$ is a relation from B to C.
- S o R = $\{(1,b),(1,a),(2,a)\}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Implementation of composite

Examples:

- Let $A = \{1,2\}, \{1,2,3\} C = \{a,b\}$
- $R = \{(1,2),(1,3),(2,1)\}$ is a relation from A to B
- $S = \{(1,a),(3,b),(3,a)\}$ is a relation from B to C.
- S o R = $\{(1,b),(1,a),(2,a)\}$

CS 441 Discrete mathematics for CS

Examples:

- Let $A = \{1,2\}, \{1,2,3\} C = \{a,b\}$
- $R = \{(1,2),(1,3),(2,1)\}$ is a relation from A to B
- $S = \{(1,a),(3,b),(3,a)\}$ is a relation from B to C.
- S o R = $\{(1,b),(1,a),(2,a)\}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Implementation of composite

Examples:

- Let $A = \{1,2\}, \{1,2,3\} C = \{a,b\}$
- $R = \{(1,2),(1,3),(2,1)\}$ is a relation from A to B
- $S = \{(1,a),(3,b),(3,a)\}$ is a relation from B to C.
- S o R = $\{(1,b),(1,a),(2,a)\}$

CS 441 Discrete mathematics for CS

Examples:

- Let $A = \{1,2\}, \{1,2,3\} C = \{a,b\}$
- $R = \{(1,2),(1,3),(2,1)\}$ is a relation from A to B
- $S = \{(1,a),(3,b),(3,a)\}$ is a relation from B to C.
- S o R = $\{(1,b),(1,a),(2,a)\}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Implementation of composite

Examples:

- Let $A = \{1,2\}, \{1,2,3\} C = \{a,b\}$
- $R = \{(1,2),(1,3),(2,1)\}$ is a relation from A to B
- $S = \{(1,a),(3,b),(3,a)\}$ is a relation from B to C.
- S o R = $\{(1,b),(1,a),(2,a)\}$

$$M_{S \cap R} = ?$$

CS 441 Discrete mathematics for CS

Examples:

- Let $A = \{1,2\}, \{1,2,3\} C = \{a,b\}$
- $R = \{(1,2),(1,3),(2,1)\}$ is a relation from A to B
- $S = \{(1,a),(3,b),(3,a)\}$ is a relation from B to C.
- SOR = $\{(1,b),(1,a),(2,a)\}$

$$M_{R} = 1$$
 0 1 1 1 1 0 0 0 $M_{S} = 0$ 0 1 1 1

$$M_R \odot M_S = 1 \qquad 1 \qquad 1 \qquad 1 \qquad 0$$

$$M_{S \circ R} = 1 \qquad 1 \qquad 1 \\ 1 \qquad 0$$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Composite of relations

Definition: Let R be a relation on a set A. The **powers R**ⁿ, n = 1,2,3,... is defined inductively by

•
$$R^1 = R$$
 and $R^{n+1} = R^n \circ R$.

Examples

- $R = \{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on $A = \{1,2,3,4\}$.
- $R^1 = R = \{(1,2),(2,3),(2,4),(3,3)\}$
- R² = {(1,3), (1,4), (2,3), (3,3)}
- R³ = {(1,3), (2,3), (3,3)}
- R 4 = {(1,3), (2,3), (3,3)}
- $R^k = R^3, k > 3$.

CS 441 Discrete mathematics for CS

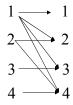
Representing binary relations with graphs

- We can graphically represent a binary relation R from A to B as follows:
 - if a R b then draw an arrow from a to b.

$$a \rightarrow b$$

Example:

- Relation R_{div} (from previous lectures) on $A=\{1,2,3,4\}$
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$



CS 441 Discrete mathematics for CS

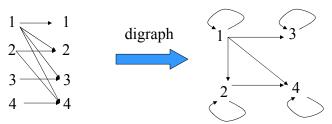
M. Hauskrecht

Representing relations on a set with digraphs

Definition: A directed graph or digraph consists of a set of vertices (or nodes) together with a set E of ordered pairs of elements of V called edges (or arcs). The vertex a is called the initial vertex of the edge (a,b) and vertex b is the terminal vertex of this edge. An edge of the form (a,a) is called a loop.

Example

• Relation $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$



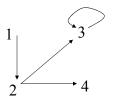
CS 441 Discrete mathematics for CS

Definition: Let R be a relation on a set A. The **powers R**ⁿ, n = 1,2,3,... is defined inductively by

•
$$R^1 = R$$
 and $R^{n+1} = R^n \circ R$.

Examples

• $R = \{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on $A = \{1,2,3,4\}$.



CS 441 Discrete mathematics for CS

M. Hauskrecht

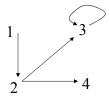
Composite of relations

Definition: Let R be a relation on a set A. The **powers R**ⁿ, n = 1,2,3,... is defined inductively by

•
$$\mathbf{R}^1 = \mathbf{R}$$
 and $\mathbf{R}^{n+1} = \mathbf{R}^n \mathbf{o} \mathbf{R}$.

Examples

- $R = \{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on $A = \{1,2,3,4\}$.
- $R^1 = R = \{(1,2),(2,3),(2,4),(3,3)\}$
- R² = {(1,3), (1,4), (2,3), (3,3)}
- What does R ² represent?



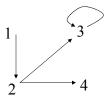
CS 441 Discrete mathematics for CS

Definition: Let R be a relation on a set A. The **powers R**ⁿ, n = 1,2,3,... is defined inductively by

•
$$R^1 = R$$
 and $R^{n+1} = R^n \circ R$.

Examples

- $R = \{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on $A = \{1,2,3,4\}$.
- $R^1 = R = \{(1,2),(2,3),(2,4),(3,3)\}$
- $R^2 = \{(1,3), (1,4), (2,3), (3,3)\}$
- What does R ² represent?
- Paths of length 2



CS 441 Discrete mathematics for CS

M. Hauskrecht

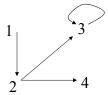
Composite of relations

Definition: Let R be a relation on a set A. The **powers R**ⁿ, n = 1,2,3,... is defined inductively by

•
$$R^1 = R$$
 and $R^{n+1} = R^n \circ R$.

Examples

- $R = \{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on $A = \{1,2,3,4\}$.
- $R^1 = R = \{(1,2),(2,3),(2,4),(3,3)\}$
- R² = {(1,3), (1,4), (2,3), (3,3)}
- What does R ² represent?
- Paths of length 2
- R³ = {(1,3), (2,3), (3,3)}



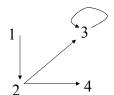
CS 441 Discrete mathematics for CS

Definition: Let R be a relation on a set A. The **powers R**ⁿ, n = 1,2,3,... is defined inductively by

• $\mathbf{R}^1 = \mathbf{R}$ and $\mathbf{R}^{n+1} = \mathbf{R}^n \mathbf{o} \mathbf{R}$.

Examples

- $R = \{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on $A = \{1,2,3,4\}$.
- $R^1 = R = \{(1,2),(2,3),(2,4),(3,3)\}$
- R² = {(1,3), (1,4), (2,3), (3,3)}
- What does R ² represent?
- Paths of length 2
- $R^3 = \{(1,3), (2,3), (3,3)\}$ path of length 3



CS 441 Discrete mathematics for CS

M. Hauskrecht

Transitive relation

Definition (transitive relation): A relation R on a set A is called **transitive** if

- $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R \text{ for all } a,b,c \in A.$
- Example 1:
- $R_{div} = \{(a b), if a | b\} \text{ on } A = \{1,2,3,4\}$
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- Is R_{div} transitive?
- · Answer: Yes.

CS 441 Discrete mathematics for CS

Connection to Rⁿ

Theorem: The relation R on a set A is transitive **if and only if** $R^n \subseteq R$ for n = 1,2,3,...

Proof: bi-conditional (if and only if)

(\leftarrow) Suppose $R^n \subseteq R$, for n = 1, 2, 3, ...

- Let $(a,b) \in R$ and $(b,c) \in R$
- by the definition of R o R, $(a,c) \in R$ o $R \subseteq R \rightarrow$
- R is transitive.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Connection to Rⁿ

Theorem: The relation R on a set A is transitive **if and only if** $R^n \subseteq R$ for n = 1,2,3,...

Proof: biconditional (if and only if)

(→) Suppose R is transitive. Show $R^n \subseteq R$, for n = 1,2,3,....

- Let $P(n) : R^n \subseteq R$. Math induction.
- **Basis Step:** P(1) says $R^1 = R$ so, $R^1 \subseteq R$ is true.
- **Inductive Step:** show $P(n) \rightarrow P(n+1)$
- Want to show if $R^n \subseteq R$ then $R^{n+1} \subseteq R$.
- Let (a,b) ∈ Rⁿ⁺¹ then by the definition of Rⁿ⁺¹ = Rⁿ o R there is an element x ∈ A so that (a,x) ∈ R and (x,b) ∈ Rⁿ ⊆ R (inductive hypothesis). In addition to (a,x) ∈ R and (x,b) ∈ R, R is transitive; so (a,b) ∈ R.
- Therefore, $R^{n+1} \subseteq R$.

CS 441 Discrete mathematics for CS

Number of reflexive relations

Theorem: The number of reflexive relations on a set A, where $A \mid = n$ is: $2^{n(n-1)}$.

Proof:

- A reflexive relation R on A must contain all pairs (a,a) where a ∈ A.
- All other pairs in R are of the form (a,b), $a \neq b$, such that $a, b \in A$.
- How many of these pairs are there? Answer: n(n-1).
- How many subsets on n(n-1) elements are there?
- Answer: $2^{n(n-1)}$.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Closures of relations

- Let $R = \{(1,1),(1,2),(2,1),(3,2)\}$ on $A = \{1 \ 2 \ 3\}$.
- Is this relation reflexive?
- Answer: **No.** Why?
- (2,2) and (3,3) is not in R.
- The question is what is **the minimal relation S** \supseteq R that is reflexive?
- How to make R reflexive with minimum number of additions?
- **Answer:** Add (2,2) and (3,3)
 - Then $S = \{(1,1),(1,2),(2,1),(3,2),(2,2),(3,3)\}$
 - $R \subset S$
 - The minimal set $S \supseteq R$ is called the reflexive closure of R

CS 441 Discrete mathematics for CS

Reflexive closure

The set S is called **the reflexive closure of R** if it:

- contains R
- has reflexive property
- is contained in every reflexive relation Q that contains $R\ (R\ \subseteq Q)$, that is $\ S\subseteq Q$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Closures on relations

- Relations can have different properties:
 - reflexive,
 - symmetric
 - transitive
- Because of that we can have:
 - symmetric,
 - reflexive and
 - transitive

closures.

CS 441 Discrete mathematics for CS

Closures

Definition: Let R be a relation on a set A. A relation S on A with property P is called **the closure of R with respect to P** if S is a subset of every relation Q (S \subseteq Q) with property P that contains R (R \subset Q).

CS 441 Discrete mathematics for CS

M. Hauskrecht

Closures

Definition: Let R be a relation on a set A. A relation S on A with property P is called **the closure of R with respect to P** if S is a subset of every relation Q ($S \subseteq Q$) with property P that contains R ($R \subseteq Q$).

Example (a symmetric closure):

- Assume $R=\{(1,2),(1,3),(2,2)\}$ on $A=\{1,2,3\}$.
- What is the symmetric closure S of R?
- $S = \{(1,2),(1,3),(2,2)\} \cup \{(2,1),(3,1)\}$ = $\{(1,2),(1,3),(2,2),(2,1),(3,1)\}$

CS 441 Discrete mathematics for CS

Closures

Definition: Let R be a relation on a set A. A relation S on A with property P is called **the closure of R with respect to P** if S is a subset of every relation Q (S \subseteq Q) with property P that contains R (R \subseteq Q).

Example (transitive closure):

- Assume $R=\{(1,2), (2,2), (2,3)\}$ on $A=\{1,2,3\}$.
- Is R transitive? No.
- How to make it transitive?
- $S = \{(1,2), (2,2), (2,3)\} \cup \{(1,3)\}$ = $\{(1,2), (2,2), (2,3), (1,3)\}$
- S is the transitive closure of R

CS 441 Discrete mathematics for CS