CS 441 Discrete Mathematics for CS

Lecture 22
Relations II.
Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square
CS 441 Discrete mathematics for CS M. Hauskrecht

Combining relations

Definition: Let A and B be sets. A binary relation from A to B is
a subset of a Cartesian product A x B.

or R — A x B means R is a set of ordered pairs of the form (a,b)
wherea € A and b € B.

Combining Relations

+ Relations are sets 2 combinations via set operations

» Set operations of: union, intersection, difference and
symmetric difference.
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Combining relations

Example:

 Let A={1,2,3} and B= {u,v} and
« RI={(Lu), (2w, (2,v), 3,u)}

« R2={(1,v),(3,u),(3,v)}

What is:

« R1 UR2={(1,u),(1,v),(2,u),(2,v),(3,u),(3,v)}
* RInR2={@B,u)}

* R1-R2={(1,u),(2,u),(2,v)}

« R2-R1={(1,v),3,v)}
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Combination of relations

* Can the relation formed by taking the union or intersection or
composition of two relations R1 and R2 be represented in terms
of matrix operations? Yes
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Union: matrix implementation

Definition. The join, denoted by v, of two m-by-n matrices (a;;)
and (b;;) of Os and 1s is an m-by-n matrix (m;;) where
my = a; v by for all 1,j
= pairwise or (disjunction)

+ Example:

« LetA={1,2,3} and B = {u,v} and
 R1={(L,u), (2,u), (2,v), (3,u)}

« R2={(1,v),(3,u),3,v)}

- MRI=1 0 MR2=0 1 M@RIVR2=1 1
1 1 0 o0 1 1
1 0 1 1 1 1
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Intersection: matrix implementation

Definition. The meet, denoted by A , of two m-by-n matrices (a;)

and (b;) of Os and Is is an m-by-n matrix (m;) where
emy = a; A by forall 1,j

= pairwise and (conjunction)

* Example:

« LetA={1,2,3} and B = {u,v} and
 R1={(L,u), (2,u), (2,v), (3,u)}

© R2={(1,v),3,0),(3,v)}

- MRI=1 0 MR2=0 1 MR1 AMR2=0 0
1 1 0 0 0 0
1 0 1 1 1 0
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Composite of relations

Definition: Let R be a relation from a set Atoaset Band S a
relation from B to a set C. The composite of R and S is the
relation consisting of the ordered pairs (a,c) where a € A and c
€ C, and for which there is a b € B such that (a,b) € R and (b,c)
€ S. We denote the composite of R and S by S o R.

Example: 5 B C (ac) e SoR
4 O VO Y
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Composite of relations

Definition: Let R be a relation froma set AtoasetBand S a
relation from B to a set C. The composite of R and S is the
relation consisting of the ordered pairs (a,c) where a € A and ¢
€ C, and for which there is ab € B such that (a,b) € R and (b,c)
€ S. We denote the composite of R and S by S o R.

Examples:

« LetA={1,2,3},B={0,1,2} and C = {a,b}.
* R={(1,0), (1,2), 3,1),(3,2)}

* S={(0,b),(1,2),(2,b)}

* SoR=?
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Composite of relations

Definition: Let R be a relation from a set Atoaset Band S a
relation from B to a set C. The composite of R and S is the
relation consisting of the ordered pairs (a,c) where a € A and c
€ C, and for which there is a b € B such that (a,b) € R and (b,c)
€ S. We denote the composite of R and S by S o R.

Example:

« LetA={1,23},B=1{0,1,2} and C = {a,b}.
* R={(1,0), (1,2), 3,1),(3,2)}

* S={(0,b),(1,2),(2,b)}

* SoR={(1,b),3,a),(3,b)}
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Composite: matrix implementation

Definition. The Boolean product, denoted by ®, of an m-by-n
matrix (a;) and n-by-p matrix (by) of Os and Is is an m-by-p
matrix (m;,) where

s my = 1,if a; =1 and b, = 1 for some k=1,2,...,n

0, otherwise

Examples:

Let A= {1,2,3}, B={0,1,2} and C = {a,b}.

R =1{(1,0), (1,2), (3,1),(3,2)}

S ={(0,b),(1,2),(2,b)}

SoR={(1,b),(3,2),(3,b)}
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Implementation of composite

Examples:

 Let A= {12}, {1,2,3} C={ab}

« R=1{(1,2),(1,3),(2,1)} is a relation from A to B
+ S={(1,2),(3,b),(3,a)} is a relation from B to C.
* SoR={(1,b),(1,2),(2,a)}

0 0
M = 1 0 0 Mg = 0 0
My © Mg = ?
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Implementation of composite
Examples:

 LetA={1,2},{1,2,3} C={a,b}

« R={(1,2),(1,3),(2,1)} is a relation from A to B
 S={(1,2),(3,b),(3,2)} is a relation from B to C.
* SoR={(1,b),(1,2),(2,a)}

M, ®M; =
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Implementation of composite

Examples:

 Let A= {12}, {1,2,3} C={ab}

« R=1{(1,2),(1,3),(2,1)} is a relation from A to B
« S={(1,a),(3,b),(3,a)} is a relation from B to C.
* SoR={(1,b),(1,a),(2,a)}

0 0
M = 1 0 0 Mg = 0 0
My © Mg = ?
X X
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Implementation of composite
Examples:

« Let A= {12}, {1,2,3} C={a,b}

« R={(1,2),(1,3),(2,1)} is a relation from A to B
 S={(1,2),(3,b),(3,2)} is a relation from B to C.
* SoR={(1,b),(1,2),(2,a)}

0 0
M, = 1 0o 0 Mg = 0 0
M, ®My = 1 ?

X X
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Implementation of composite

Examples:

 Let A= {12}, {1,2,3} C={ab}

« R=1{(1,2),(1,3),(2,1)} is a relation from A to B
« S={(1,a),(3,b),(3,a)} is a relation from B to C.
* SoR={(1,b),(1,a),(2,a)}

0 0
M = 1 0 0 Mg = 0 0
My © Mg = 1 ?
X X
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Implementation of composite
Examples:

« Let A= {12}, {1,2,3} C={a,b}

« R={(1,2),(1,3),(2,1)} is a relation from A to B
 S={(1,2),(3,b),(3,2)} is a relation from B to C.
* SoR={(1,b),(1,2),(2,a)}

0 0
M, = 1 0o 0 Mg = 0 0
M, ®My = 1 1

X X
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Implementation of composite

Examples:

 Let A= {12}, {1,2,3} C={ab}

« R=1{(1,2),(1,3),(2,1)} is a relation from A to B
« S={(1,a),(3,b),(3,a)} is a relation from B to C.
* SoR={(1,b),(1,a),(2,a)}

0 0
Mp =1 0 0 Mg = 0 0
1 X
CS 441 Discrete mathematics for CS M. Hauskrecht
Implementation of composite
Examples:

 LetA={1,2}, {1,2,3} C={a,b}

« R=1{(1,2),(1,3),(2,1)} is a relation from A to B
« S={(1,a),(3,b),(3,a)} is a relation from B to C.
* SoR={(1,b),(1,2),(2,a)}

0 1 1 1 0
M, = 1 0O 0 Mg = 0 0
1 1
M, ®M; = 1 1
1 0
MSOR ?
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Implementation of composite

Examples:

« Let A= {12}, {1,2,3} C={a,b}

« R=1{(1,2),(1,3),(2,1)} is a relation from A to B
 S={(1,2),(3,b),(3,2)} is a relation from B to C.
« SOR={(1,b),(1,a),(2,a)}

0 1 1 1 0

M, = 1 o 0 Mg = 0 0

1 1
M,®M; = 1 1
1 0
Mg, r 1 1
1 0
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Composite of relations

Definition: Let R be a relation on a set A. The powers R", n =
1,2,3,... is defined inductively by

e RI=R and R"1=RnrgR.

Examples

« R=1{(1,2),(2,3),(2,4), (3,3)} is arelation on A = {1,2,3,4}.
« R'=R=/{(1,2),(2,3),(2,4), (3,3)}

« R2={(1,3), (1,4), (2,3), (3,3)}

« R7={(1,3),(2,3),(3,3)}

« R4=1{(1,3),(2,3), (3,3)}

e Rk=R3 k>3,
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Representing binary relations with graphs

» We can graphically represent a binary relation R from A to B as
follows:

* if a R b then draw an arrow from a to b.

a—>b
Example:

» Relation Ry, (from previous lectures) on A={1,2,3,4}
© Ry = {11, (1,2), (1,3), (1.4, (2,2), (2,4), (3.3), (4.4)}
l— 1
2 2
3 3
4
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Representing relations on a set with digraphs

Definition: A directed graph or digraph consists of a set of
vertices (or nodes) together with a set E of ordered pairs of
elements of V called edges (or arcs). The vertex a is called the
initial vertex of the edge (a,b) and vertex b is the terminal vertex
of this edge. An edge of the form (a,a) is called a loop.

Example
+ Relation Ry, ={(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)}

l— 1 o o

digraph 1 3
2
3 \ :..

4

[USTEE \V)

9
G
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Composite of relations

Definition: Let R be a relation on a set A. The powers R", n =
1,2,3,... is defined inductively by

* RI=R and R"1=RngR.
Examples
« R=1{(1,2),(2,3),(2,4), (3,3)} is arelation on A = {1,2,3,4}.
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Composite of relations

Definition: Let R be a relation on a set A. The powers R", n =
1,2,3,... is defined inductively by

*R'=R and R"™!=R"oR.
Examples
« R=1{(1,2),(2,3),(2,4), (3,3)} is arelation on A = {1,2,3,4}.

1
« R'=R=/{(1,2),(2,3),(2,4), (3,3)} |
© R2={(13), (14). 23), G.3)) 4

« What does R 2 represent?
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Composite of relations

Definition: Let R be a relation on a set A. The powers R", n =
1,2,3,... is defined inductively by

* RI=R and R"1=RngR.
Examples
« R=1{(1,2),(2,3),(2,4), (3,3)} is arelation on A = {1,2,3,4}.

1
« R'=R={(1,2),(2,3),(2,4), (3,3)} \ /
* R2={(1,3),(1,4),(2,3),(3.3)} 4
* What does R 2 represent?
* Paths of length 2
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Composite of relations

Definition: Let R be a relation on a set A. The powers R", n =
1,2,3,... is defined inductively by

*R'=R and R"™!=R"oR.
Examples
« R=1{(1,2),(2,3),(2,4), (3,3)} is arelation on A = {1,2,3,4}.

1
« R!'=R={(1,2),(2,3),(2,4), (3,3)} | i
« R2={(1,3),(1,4),(2,3), (3,3)} 4
« What does R 2 represent?

 Paths of length 2
« R3={(1,3),(2.3),3.3)}
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Composite of relations

Definition: Let R be a relation on a set A. The powers R", n =
1,2,3,... is defined inductively by

* RI=R and R"1=RngR.
Examples
« R=1{(1,2),(2,3),(2,4), (3,3)} is arelation on A = {1,2,3,4}.

1
« R'=R=1{(1,2),2,3),(2,4), (3,3)} \4
« R2=1{(1,3),(1,4), (2,3), (3,3)} 4
« What does R ? represent?

+ Paths of length 2
« R3={(1,3),(2,3),(3,3)} path of length 3
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Transitive relation

Definition (transitive relation): A relation R on a set A is called
transitive if

* [(a,b) e Rand (b,c) e R] —» (a,c) e R forall a,b,c € A.

« Example 1:

+ Ry, ={(ab),ifab} on A= {1,234}

¢ Ry, = {(11), (1,2), (1,3), (14), (2.2), (2,4), 3.3), (44}
* Is Ry, transitive?

* Answer: Yes.
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Connection to R

Theorem: The relation R on a set A is transitive if and only if

RocRforn=1,23,....

Proof: bi-conditional (if and only if)

(<) Suppose R*c R, forn=1,2,3,.....
* Let(a,b) e Rand (b,c) e R
* by the definitionof Ro R, (a,c) e RoORcR —

R is transitive.
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Connection to R

Theorem: The relation R on a set A is transitive if and only if

R cRforn=1,23,....

Proof: biconditional (if and only if)
(=) Suppose R is transitive. Show R* — R, forn=1,2,3,... .

Let P(n) : R < R. Math induction.

Basis Step: P(1) says R' =R so, R! c R is true.
Inductive Step: show P(n) > P(n+1)

Want to show if R® < R then R*"! < R.

Let (a,b) € R**! then by the definition of R**! = R" o0 R there is
an element x € A so that (a,x) € R and (x,b) € R"c R
(inductive hypothesis). In addition to (a,x) € R and (x,b) € R, R
is transitive; so (a,b) € R.

Therefore, R*! < R.
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Number of reflexive relations

Theorem: The number of reflexive relations on a set A, where

A|=n is: 200D,

Proof:

A reflexive relation R on A must contain all pairs (a,a) where
aeA.

All other pairs in R are of the form (a,b), a # b, such thata, b € A.
How many of these pairs are there? Answer: n(n-1).

How many subsets on n(n-1) elements are there?

Answer: 2 (D)
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Closures of relations

Let R={(1,1),(1,2),(2,1),(3,2)} on A ={1 2 3}.
Is this relation reflexive?

Answer: No. Why?

(2,2) and (3,3) is not in R.

The question is what is the minimal relation S o R that is
reflexive?

How to make R reflexive with minimum number of additions?
Answer: Add (2,2) and (3,3)

* Then S= {(1,1),(1,2),(2,1),(3,2),(2,2),(3,3)}

*Rc S

* The minimal set S © R is called the reflexive closure of R
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Reflexive closure

The set S is called the reflexive closure of R if it:
— contains R
— has reflexive property

— 1s contained in every reflexive relation Q that contains R (R
cQ),thatis ScQ
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Closures on relations

* Relations can have different properties:
* reflexive,
e symmetric
* transitive

» Because of that we can have:
* symmetric,
* reflexive and
* transitive

closures.
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Closures

Definition: Let R be a relation on a set A. A relation S on A with
property P is called the closure of R with respect to P if Sis a
subset of every relation Q (S < Q) with property P that contains
RRcQ).
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Closures

Definition: Let R be a relation on a set A. A relation S on A with
property P is called the closure of R with respect to P if S is a
subset of every relation Q (S < Q) with property P that contains
RRcQ).

Example (a symmetric closure):
* Assume R={(1,2),(1,3), (2,2)} on A={1,2,3}.
* What is the symmetric closure S of R?
* S=1{(1,2),(1,3),(2,2)} {21, 3.1}
= {(1,2),(1,3), (2,2),2,1), 3, 1)}
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Closures

Definition: Let R be a relation on a set A. A relation S on A with
property P is called the closure of R with respect to P if Sisa
subset of every relation Q (S < Q) with property P that contains
RRcQ).

Example (transitive closure):
» Assume R={(1,2), (2,2), (2,3)} on A={1,2,3}.
* Is R transitive? No.
* How to make it transitive?
* $={1,2), (2,2), (2,3)} v {(1,3)}
={(1,2), (2,2), (2,3),(1,3)}
* S is the transitive closure of R
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