Relations II.

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Combining relations

Definition: Let A and B be sets. A binary relation from A to B is a subset of a Cartesian product A x B.

or \(R \subseteq A \times B \) means R is a set of ordered pairs of the form \((a,b)\) where \(a \in A\) and \(b \in B\).

Combining Relations

- Relations are sets \(\rightarrow\) combinations via set operations
- Set operations of: union, intersection, difference and symmetric difference.
Combining relations

Example:
- Let $A = \{1,2,3\}$ and $B = \{u,v\}$ and
- $R_1 = \{(1,u), (2,u), (2,v), (3,u)\}$
- $R_2 = \{(1,v),(3,u),(3,v)\}$

What is:
- $R_1 \cup R_2 = \{(1,u),(1,v),(2,u),(2,v),(3,u),(3,v)\}$
- $R_1 \cap R_2 = \{(3,u)\}$
- $R_1 - R_2 = \{(1,u),(2,u),(2,v)\}$
- $R_2 - R_1 = \{(1,v),(3,v)\}$

Combination of relations

- Can the relation formed by taking the union or intersection or composition of two relations R_1 and R_2 be represented in terms of matrix operations? **Yes**
Union: matrix implementation

Definition. The **join**, denoted by \lor, of two m-by-n matrices (a_{ij}) and (b_{ij}) of 0s and 1s is an m-by-n matrix (m_{ij}) where

- $m_{ij} = a_{ij} \lor b_{ij}$ for all i,j
- = pairwise or (disjunction)

Example:

- Let $A = \{1,2,3\}$ and $B = \{u,v\}$ and
- $R_1 = \{(1,u), (2,u), (2,v), (3,u)\}$
- $R_2 = \{(1,v),(3,u),(3,v)\}$

<table>
<thead>
<tr>
<th></th>
<th>R_1</th>
<th>R_2</th>
<th>$R_1 \lor R_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{R_1}</td>
<td>\begin{bmatrix} 1 & 0 \ 1 & 1 \ 1 & 0 \end{bmatrix}</td>
<td>\begin{bmatrix} 0 & 1 \ 1 & 1 \ 1 & 0 \end{bmatrix}</td>
<td>\begin{bmatrix} 1 & 1 \ 1 & 1 \ 1 & 1 \end{bmatrix}</td>
</tr>
</tbody>
</table>

Intersection: matrix implementation

Definition. The **meet**, denoted by \land, of two m-by-n matrices (a_{ij}) and (b_{ij}) of 0s and 1s is an m-by-n matrix (m_{ij}) where

- $m_{ij} = a_{ij} \land b_{ij}$ for all i,j
- = pairwise and (conjunction)

Example:

- Let $A = \{1,2,3\}$ and $B = \{u,v\}$ and
- $R_1 = \{(1,u), (2,u), (2,v), (3,u)\}$
- $R_2 = \{(1,v),(3,u),(3,v)\}$

<table>
<thead>
<tr>
<th></th>
<th>R_1</th>
<th>R_2</th>
<th>$R_1 \land R_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{R_1}</td>
<td>\begin{bmatrix} 1 & 0 \ 1 & 1 \ 1 & 0 \end{bmatrix}</td>
<td>\begin{bmatrix} 0 & 1 \ 1 & 1 \ 1 & 0 \end{bmatrix}</td>
<td>\begin{bmatrix} 0 & 0 \ 0 & 0 \ 0 & 0 \end{bmatrix}</td>
</tr>
</tbody>
</table>
Composite of relations

Definition: Let \(R \) be a relation from a set \(A \) to a set \(B \) and \(S \) a relation from \(B \) to a set \(C \). The **composite of \(R \) and \(S \)** is the relation consisting of the ordered pairs \((a,c)\) where \(a \in A \) and \(c \in C \), and for which there is a \(b \in B \) such that \((a,b)\) \(\in \) \(R \) and \((b,c)\) \(\in \) \(S \). We denote the composite of \(R \) and \(S \) by \(S \circ R \).

Example:

\[
\begin{array}{ccc}
A & B & C \\
a & b & c \\
\end{array}
\]

\((a,c) \in S \circ R \)

\[
R \\
S
\]

Examples:
- Let \(A = \{1,2,3\} \), \(B = \{0,1,2\} \) and \(C = \{a,b\} \).
- \(R = \{(1,0), (1,2), (3,1),(3,2)\} \)
- \(S = \{(0,b),(1,a),(2,b)\} \)
- \(S \circ R = ? \)
Composite of relations

Definition: Let R be a relation from a set A to a set B and S a relation from B to a set C. The **composite of R and S** is the relation consisting of the ordered pairs (a,c) where a ∈ A and c ∈ C, and for which there is a b ∈ B such that (a,b) ∈ R and (b,c) ∈ S. We denote the composite of R and S by $S \circ R$.

Example:
- Let A = \{1,2,3\}, B = \{0,1,2\} and C = \{a,b\}.
- R = \{(1,0), (1,2), (3,1),(3,2)\}
- S = \{(0,b),(1,a),(2,b)\}
- $S \circ R = \{(1,b),(3,a),(3,b)\}$

Composite: matrix implementation

Definition. The **Boolean product**, denoted by Θ, of an m-by-n matrix (a_{ij}) and n-by-p matrix (b_{jk}) of 0s and 1s is an m-by-p matrix (m_{ik}) where

$m_{ik} = \begin{cases} 1, & \text{if } a_{ij} = 1 \text{ and } b_{jk} = 1 \text{ for some } k=1,2,...,n \\ 0, & \text{otherwise} \end{cases}$

Examples:
- Let A = \{1,2,3\}, B = \{0,1,2\} and C = \{a,b\}.
- R = \{(1,0), (1,2), (3,1),(3,2)\}
- S = \{(0,b),(1,a),(2,b)\}
- $S \circ R = \{(1,b),(3,a),(3,b)\}$
Implementation of composite

Examples:

• Let A = \{1,2\}, \{1,2,3\} C = \{a,b\}
• R = \{(1,2),(1,3),(2,1)\} is a relation from A to B
• S = \{(1,a),(3,b),(3,a)\} is a relation from B to C.
• \(S \circ R = \{(1,b),(1,a),(2,a)\}\)

\[
\begin{array}{ccc}
0 & 1 & 1 \\
M_R = 1 & 0 & 0 \\
\end{array}
\begin{array}{ccc}
1 & 0 \\
M_S = 0 & 0 \\
\end{array}
\begin{array}{c}
1 \\
1 \\
\end{array}
\]

\(M_R \otimes M_S = ?\)

Implementation of composite

Examples:

• Let A = \{1,2\}, \{1,2,3\} C = \{a,b\}
• R = \{(1,2),(1,3),(2,1)\} is a relation from A to B
• S = \{(1,a),(3,b),(3,a)\} is a relation from B to C.
• \(S \circ R = \{(1,b),(1,a),(2,a)\}\)

\[
\begin{array}{ccc}
0 & 1 & 1 \\
M_R = 1 & 0 & 0 \\
\end{array}
\begin{array}{ccc}
1 & 0 \\
M_S = 0 & 0 \\
\end{array}
\begin{array}{c}
1 \\
1 \\
\end{array}
\]

\(M_R \otimes M_S = x \ x \\
\ x \ x\)
Implementation of composite

Examples:
- Let A = {1, 2}, {1, 2, 3} C = {a, b}
- R = {(1, 2), (1, 3), (2, 1)} is a relation from A to B
- S = {(1, a), (3, b), (3, a)} is a relation from B to C.
- S o R = {(1, b), (1, a), (2, a)}

\[
\begin{array}{ccc}
0 & 1 & 1 \\
M_R = 1 & 0 & 0 \\
\end{array}
\begin{array}{cc}
M_S = & 1 & 0 \\
& 0 & 0 \\
& 1 & 1 \\
\end{array}
\]

\[
M_R \odot M_S = \begin{array}{cc}
? & x \\
x & x \\
\end{array}
\]
Implementation of composite

Examples:

- Let $A = \{1,2\}, \{1,2,3\}$, $C = \{a,b\}$
- $R = \{(1,2),(1,3),(2,1)\}$ is a relation from A to B
- $S = \{(1,a),(3,b),(3,a)\}$ is a relation from B to C.
- $S \circ R = \{(1,b),(1,a),(2,a)\}$

<table>
<thead>
<tr>
<th>M_R</th>
<th>M_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 0</td>
<td>0 0 1</td>
</tr>
</tbody>
</table>

$M_R \odot M_S = \begin{cases} 1 & \text{if } x = x' \\ x & \text{otherwise} \end{cases}$
Examples:

- Let $A = \{1,2\}, \{1,2,3\}$ and $C = \{a,b\}$.
- $R = \{(1,2),(1,3),(2,1)\}$ is a relation from A to B.
- $S = \{(1,a),(3,b),(3,a)\}$ is a relation from B to C.
- $S \circ R = \{(1,b),(1,a),(2,a)\}$

\[
\begin{array}{cccc}
0 & 1 & 1 & 1 & 0 \\
M_R &=& 1 & 0 & 0 & M_S &=& 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
M_R \odot M_S &=& 1 & 1 \\
& & 1 & x \\
\end{array}
\]

$M_{S \circ R} = ?$
Implementation of composite

Examples:
- Let \(A = \{1,2\} \), \(B = \{1,2,3\} \), \(C = \{a,b\} \)
- \(R = \{(1,2),(1,3),(2,1)\} \) is a relation from \(A \) to \(B \)
- \(S = \{(1,a),(3,b),(3,a)\} \) is a relation from \(B \) to \(C \).
- \(S \circ R = \{(1,b),(1,a),(2,a)\} \)

\[
\begin{array}{ccc}
0 & 1 & 1 \\
1 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
\end{array}
\]

\[
M_R = \begin{array}{cc}
1 & 0 \\
0 & 1 \\
\end{array}, \quad M_S = \begin{array}{cc}
0 & 0 \\
1 & 1 \\
\end{array}
\]

\[
M_R \odot M_S = \begin{array}{cc}
1 & 1 \\
1 & 0 \\
\end{array}
\]

\[
M_{S \circ R} = \begin{array}{cc}
1 & 1 \\
1 & 0 \\
\end{array}
\]

Composite of relations

Definition: Let \(R \) be a relation on a set \(A \). The **powers** \(R^n \), \(n = 1,2,3,... \) is defined inductively by

- \(R^1 = R \) and \(R^{n+1} = R^n \circ R \).

Examples
- \(R = \{(1,2),(2,3),(2,4),(3,3)\} \) is a relation on \(A = \{1,2,3,4\} \).
- \(R^1 = R = \{(1,2),(2,3),(2,4),(3,3)\} \)
- \(R^2 = \{(1,3),(1,4),(2,3),(3,3)\} \)
- \(R^3 = \{(1,3),(2,3),(3,3)\} \)
- \(R^4 = \{(1,3),(2,3),(3,3)\} \)
- \(R^k = R^3, \quad k > 3. \)
Representing binary relations with graphs

- We can graphically represent a binary relation R from A to B as follows:
 - if $a R b$ then draw an arrow from a to b.

Example:
- Relation R_{div} (from previous lectures) on $A=\{1,2,3,4\}$
- $R_{\text{div}} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$

Representing relations on a set with digraphs

Definition: A directed graph or digraph consists of a set of vertices (or nodes) together with a set E of ordered pairs of elements of V called edges (or arcs). The vertex a is called the initial vertex of the edge (a,b) and vertex b is the terminal vertex of this edge. An edge of the form (a,a) is called a loop.

Example
- Relation $R_{\text{div}} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
Composite of relations

Definition: Let R be a relation on a set A. The powers R^n, $n = 1, 2, 3, \ldots$ is defined inductively by

- $R^1 = R$ and $R^{n+1} = R^n \circ R$.

Examples
- $R = \{(1,2), (2,3), (2,4), (3,3)\}$ is a relation on $A = \{1, 2, 3, 4\}$.

1 2 3 4

$R^1 = R = \{(1,2), (2,3), (2,4), (3,3)\}$

$R^2 = \{(1,3), (1,4), (2,3), (3,3)\}$

What does R^2 represent?
Composite of relations

Definition: Let R be a relation on a set A. The powers R^n, $n = 1,2,3,...$ is defined inductively by

- $R^1 = R$ and $R^{n+1} = R^n \circ R$.

Examples

- $R = \{(1,2), (2,3), (2,4), (3,3)\}$ is a relation on $A = \{1,2,3,4\}$.

- $R^1 = R = \{(1,2), (2,3), (2,4), (3,3)\}$
- $R^2 = \{(1,3), (1,4), (2,3), (3,3)\}$
- What does R^2 represent?
- Paths of length 2
Composite of relations

Definition: Let R be a relation on a set A. The powers R^n, $n = 1,2,3,...$ is defined inductively by

- $R^1 = R$ and $R^{n+1} = R^n \circ R$.

Examples

- $R = \{(1,2),(2,3),(2,4), (3,3)\}$ is a relation on $A = \{1,2,3,4\}$.

- $R^1 = R = \{(1,2),(2,3),(2,4), (3,3)\}$
- $R^2 = \{(1,3), (1,4), (2,3), (3,3)\}$
- What does R^2 represent?
- Paths of length 2
- $R^3 = \{(1,3), (2,3), (3,3)\}$ path of length 3

Transitive relation

Definition (transitive relation): A relation R on a set A is called **transitive** if

- $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R$ for all $a, b, c \in A$.

Example 1:

- $R_{\text{div}} = \{(a, b), \text{ if } a \mid b\}$ on $A = \{1,2,3,4\}$
- $R_{\text{div}} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- Is R_{div} transitive?
- Answer: Yes.
Connection to R^n

Theorem: The relation R on a set A is transitive if and only if $R^n \subseteq R$ for $n = 1,2,3,...$.

Proof: bi-conditional (if and only if)

(\leftarrow) Suppose $R^n \subseteq R$, for $n =1,2,3,...$.

- Let $(a,b) \in R$ and $(b,c) \in R$.
- by the definition of $R \circ R$, $(a,c) \in R \circ R \subseteq R$.
- R is transitive.

(\rightarrow) Suppose R is transitive. Show $R^n \subseteq R$, for $n =1,2,3,...$.

- Let $P(n) : R^n \subseteq R$. Math induction.
- **Basis Step:** $P(1)$ says $R^1 = R$ so, $R^1 \subseteq R$ is true.
- **Inductive Step:** show $P(n) \rightarrow P(n+1)$
- Want to show if $R^n \subseteq R$ then $R^{n+1} \subseteq R$.
- Let $(a,b) \in R^{n+1}$ then by the definition of $R^{n+1} = R^n \circ R$ there is an element $x \in A$ so that $(a,x) \in R$ and $(x,b) \in R^n \subseteq R$ (inductive hypothesis). In addition to $(a,x) \in R$ and $(x,b) \in R$, R is transitive; so $(a,b) \in R$.
- Therefore, $R^{n+1} \subseteq R$.
Number of reflexive relations

Theorem: The number of reflexive relations on a set A, where $|A| = n$ is: $2^{n(n-1)}$.

Proof:
- A reflexive relation R on A **must contain** all pairs (a,a) where $a \in A$.
- All other pairs in R are of the form (a,b), $a \neq b$, such that $a, b \in A$.
- How many of these pairs are there? **Answer:** $n(n-1)$.
- How many subsets on $n(n-1)$ elements are there? **Answer:** $2^{n(n-1)}$.

Closures of relations

- Let $R=\{(1,1),(1,2),(2,1),(3,2)\}$ on $A = \{1 \ 2 \ 3\}$.
- Is this relation reflexive?
- **Answer:** No. Why?
- *(2,2) and (3,3) is not in R.*

- The question is what is the **minimal relation** $S \supseteq R$ that is reflexive?
- How to make R reflexive with minimum number of additions?
- **Answer:** Add (2,2) and (3,3)
 - Then $S=\{(1,1),(1,2),(2,1),(3,2),(2,2),(3,3)\}$
 - $R \subseteq S$
 - The minimal set $S \supseteq R$ is called the **reflexive closure of R**.
Reflexive closure

The set S is called the reflexive closure of R if it:

- contains R
- has reflexive property
- is contained in every reflexive relation Q that contains R ($R \subseteq Q$), that is $S \subseteq Q$

Closures on relations

- Relations can have different properties:
 - reflexive,
 - symmetric
 - transitive

- Because of that we can have:
 - symmetric,
 - reflexive and
 - transitive closures.
Closures

Definition: Let R be a relation on a set A. A relation S on A with property P is called the closure of R with respect to P if S is a subset of every relation Q (S ⊆ Q) with property P that contains R (R ⊆ Q).

Example (a symmetric closure):
• Assume R={(1,2),(1,3), (2,2)} on A={1,2,3}.
• What is the symmetric closure S of R?
• S = {(1,2),(1,3), (2,2)} ∪ {2,1}, (3,1)}
 = {(1,2),(1,3), (2,2),(2,1), (3,1)}
Closures

Definition: Let R be a relation on a set A. A relation S on A with property P is called the closure of R with respect to P if S is a subset of every relation Q (S ⊆ Q) with property P that contains R (R ⊆ Q).

Example (transitive closure):
• Assume R={(1,2), (2,2), (2,3)} on A={1,2,3}.
• Is R transitive? No.
• How to make it transitive?
• S = {(1,2), (2,2), (2,3)} ∪ {(1,3)}
 = {(1,2), (2,2), (2,3), (1,3)}
• S is the transitive closure of R