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Cartesian product (review)
• Let A={a1, a2, ..ak} and B={b1,b2,..bm}.
• The Cartesian product A x B is defined by a set of pairs      

{(a1 b1), (a1, b2), … (a1, bm), …, (ak,bm)}.

Example:
Let A={a,b,c} and B={1 2 3}. What is AxB?
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Cartesian product (review)
• Let A={a1, a2, ..ak} and B={b1,b2,..bm}.
• The Cartesian product A x B is defined by a set of pairs      

{(a1 b1), (a1, b2), … (a1, bm), …, (ak,bm)}.

Example:
Let A={a,b,c} and B={1 2 3}. What is AxB?
AxB = {(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)}
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Binary relation
Definition: Let A and B be sets. A binary relation from A to B is 

a subset of a Cartesian product A x B. 

Example: Let A={a,b,c} and B={1,2,3}. 
• R={(a,1),(b,2),(c,2)} is an example of a relation from A to B.
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Binary relation
Definition: Let A and B be sets. A binary relation from A to B is 

a subset of a Cartesian product A x B. 

Example: Let A={a,b,c} and B={1,2,3}. 
• R={(a,1),(b,2),(c,2)} is an example of a relation from A to B.

• Another example of a relation from A to B? 
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Representing binary relations
• We can graphically represent a binary relation R as follows:

• if a R b then draw an arrow from a to b.
a → b

Example:
• Let A = {0, 1, 2}, B = {u,v} and  R = { (0,u), (0,v), (1,v), (2,u) }
• Note: R ⊆ A x B.
• Graph:
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Representing binary relations
• We can represent a binary relation R by a table showing 

(marking) the ordered pairs of R.

Example:
• Let A = {0, 1, 2}, B = {u,v} and  R = { (0,u), (0,v), (1,v), (2,u) }
• Table:

R   |   u         v    
0   |    x        x
1   |              x
2   |    x

R   |   u         v    
0  |    1         1
1   |    0         1
2   |    1         0

or
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Relations and functions
• Relations represent one to many relationships between 

elements in A and B.
• Example:

• What is the difference between a relation and a function from 
A to B?  A function on sets A,B   A B assigns to each 
element in the domain set A exactly one element from B.  So it 
is a special relation.
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Relation on the set
Definition: A relation on the set A is a relation from A to itself.

Example 1: 
• Let A = {1,2,3,4} and Rdiv = {(a,b)| a divides b}
• What does Rdiv consist of?
• Rdiv = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)}

• R       |      1       2      3       4     
1      |       x       x      x       x
2      |                x               x
3      |                        x  
4      |                                 x
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Relation on the set
Example 2:
• Let A = {1,2,3,4}. 
• Define a R≠ b if and only if a ≠ b.

R≠={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}

• R       |      1       2       3       4     
1      | x       x       x
2      |       x                x       x
3      |        x       x               x 
4      |        x       x       x
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Relation on the set
Definition: A relation on the set A is a relation from A to itself.

Example 3: 
• Let A = {1,2,3,4} and
• Rfun on A = {1,2,3,4} is defined as:

• Rfun = {(1,2),(2,2),(3,3)}.
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Binary relations

• Theorem: The number of binary relations on a set A, where       
| A | = n is:

• Proof:
• If | A | = n  then  the cardinality of the Cartesian product    

| A x A | = n2.  
• R is a binary relation on A if R ⊆ A x A (that is, R is a subset 

of A x A).  
• The number of subsets of a set with k elements  :
• The number of subsets of A x A is  :

2

2n

.

2

22 || nAxA =

k2



7

CS 441 Discrete mathematics for CS M. Hauskrecht

Binary relations
• Example: Let A = {1,2}
• What is A x A = {(1,1),(1,2),(2,1),(2,2)}
• List of possible relations (subsets of A x A):
• ∅ ….    1
• {(1,1)}    {(1,2)} {(2,1)}  {(2,2)}               ….    4
• {(1,1), (1,2)}  {(1,1),(2,1)}  {(1,1),(2,2)}     ….    6

{(1,2),(2,1)}   {(1,2),(2,2)}  {(2,1),(2,2)}
• {(1,1),(1,2),(2,1)}   {(1,1),(1,2),(2,2)}           ….    4 

{(1,1),(2,1),(2,2)} {(1,2),(2,1),(2,2)}
• {(1,1),(1,2),(2,1),(2,2)}                                   ….    1

• Use formula:  24 = 16

16
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Properties of relations
Definition (reflexive relation) : A relation R on a set A is called 

reflexive if (a,a) ∈ R for every element  a ∈ A.

Example 1:
• Assume relation Rdiv ={(a b), if a |b}  on A = {1,2,3,4} 
• Is Rdiv reflexive?
• Rdiv = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)}
• Answer: Yes. (1,1), (2,2), (3,3), and (4,4) ∈ A.
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Reflexive relation
Reflexive relation
• Rdiv ={(a b), if a |b}  on A = {1,2,3,4} 
• Rdiv = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)}

1 1 1 1
MRdiv = 0 1 0 1

0 0 1 0
0 0 0 1

• A relation R is reflexive if and only if MR has 1 in every 
position on its main diagonal.
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Properties of relations
Definition (reflexive relation) : A relation R on a set A is called 

reflexive if (a,a) ∈ R for every element  a ∈ A.

Example 2:
• Relation Rfun on A = {1,2,3,4} defined as:

• Rfun = {(1,2),(2,2),(3,3)}. 
• Is Rfun reflexive? 
• No. It is not reflexive since (1,1) ∉ Rfun.
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Properties of relations
Definition (irreflexive relation): A relation R on a set A is called 

irreflexive if (a,a) ∉ R for every a ∈ A.

Example 1: 
• Assume relation R≠ on A={1,2,3,4}, such that a R≠ b if and only 

if a ≠ b.
• Is R≠ irreflexive?
• R≠={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}

• Answer: Yes. Because (1,1),(2,2),(3,3) and (4,4) ∉ R≠
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Irreflexive relation
Irreflexive relation
• R≠ on A={1,2,3,4}, such that a R≠ b if and only if a ≠ b.
• R≠={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}

0 1 1 1
1 0 1 1

MR = 1 1 0 1
1 1 1 0

• A relation R is irreflexive if and only if MR has 0 in every 
position on its main diagonal.
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Properties of relations
Definition (irreflexive relation): A relation R on a set A is called 

irreflexive if (a,a) ∉ R for every a ∈ A.

Example 2: 
• Rfun on A = {1,2,3,4} defined as:

• Rfun = {(1,2),(2,2),(3,3)}. 
• Is Rfun irreflexive?
• Answer: No. Because (2,2) and (3,3) ∈ Rfun
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Properties of relations
Definition (symmetric relation): A relation R on a set A is called 

symmetric if
∀ a, b ∈ A   (a,b) ∈ R → (b,a) ∈ R.

Example 1:
• Rdiv ={(a b), if a |b}  on A = {1,2,3,4} 
• Is Rdiv symmetric?
• Rdiv = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)}
• Answer: No. It is not symmetric since (1,2) ∈ R but  (2,1) ∉ R.
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Properties of relations
Definition (symmetric relation): A relation R on a set A is called 

symmetric if
∀ a, b ∈ A   (a,b) ∈ R → (b,a) ∈ R.

Example 2:
• R≠ on A={1,2,3,4}, such that a R≠ b if and only if a ≠ b.
• Is R≠ symmetric ?
• R≠={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}

• Answer:  Yes. If (a,b) ∈ R≠ → (b,a) ∈ R≠
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Symmetric relation
Symmetric relation:
• R≠ on A={1,2,3,4}, such that a R≠ b if and only if a ≠ b.
• R≠={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}

0 1 1 1
1 0 1 1

MR = 1 1 0 1
1 1 1 0

• A relation R is symmetric if and only if mij = mji for all i,j.
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Properties of relations
• Definition (antisymmetric relation): A relation on a set A is 

called antisymmetric if
• [(a,b) ∈ R and (b,a) ∈ R]   → a = b where a, b ∈ A.

Example 1:
• Relation Rfun on A = {1,2,3,4} defined as:

• Rfun = {(1,2),(2,2),(3,3)}.
• Is Rfun antisymmetric? 
• Answer:  Yes. It is antisymmetric

CS 441 Discrete mathematics for CS M. Hauskrecht

Antisymmetric relations
Antisymmetric relation
• relation Rfun = {(1,2),(2,2),(3,3)} 

0 1 0 0
0 1 0 0

MRfun = 0 0 1 0
0 0 0 0

• A relation is antisymmetric if and only if mij = 1 → mij = 0  for 
i≠ j.
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Properties of relations
Definition (antisymmetric relation): A relation on a set A is 

called antisymmetric if
• [(a,b) ∈ R and (b,a) ∈ R]   → a = b where a, b ∈ A.

Example 2: 
• R≠ on A={1,2,3,4}, such that a R≠ b if and only if a ≠ b.
• Is R≠ antisymmetric ?
• R≠={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}

• Answer:  No. It is not antisymmetric since (1,2) ∈ R and (2,1) ∈
R but 1≠ 2.
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Properties of relations
Definition (transitive relation): A relation R on a set A is called 

transitive if
• [(a,b) ∈ R and (b,c) ∈ R]   → (a,c) ∈ R  for all  a, b, c ∈ A.

• Example 1:
• Rdiv ={(a b), if a |b}  on A = {1,2,3,4} 
• Rdiv = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)}
• Is Rdiv transitive?
• Answer: Yes.
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Properties of relations
Definition (transitive relation): A relation R on a set A is called 

transitive if
• [(a,b) ∈ R and (b,c) ∈ R]   → (a,c) ∈ R  for all  a, b, c ∈ A.

• Example 2: 
• R≠ on A={1,2,3,4}, such that a R≠ b if and only if a ≠ b.
• R≠={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}

• Is R≠ transitive?
• Answer:  No. It is not transitive since (1,2) ∈ R and (2,1) ∈ R 

but (1,1)  is not an element of R.
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Properties of relations
Definition (transitive relation): A relation R on a set A is called 

transitive if
• [(a,b) ∈ R and (b,c) ∈ R]   → (a,c) ∈ R  for all  a, b, c ∈ A.

• Example 3:
• Relation Rfun on A = {1,2,3,4} defined as:

• Rfun = {(1,2),(2,2),(3,3)}.
• Is Rfun transitive? 
• Answer:  Yes. It is transitive.  
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Combining relations
Definition: Let A and B be sets. A binary relation from A to B is 

a subset of a Cartesian product A x B. 

• Let R ⊆ A x B means R is a set of ordered pairs of the form (a,b) 
where a ∈ A and b ∈ B.

Combining Relations
• Relations are sets combinations via set operations
• Set operations of: union,  intersection, difference and 

symmetric difference.
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Combining relations
Example:
• Let A = {1,2,3} and B = {u,v} and
• R1 = {(1,u), (2,u), (2,v), (3,u)}
• R2 = {(1,v),(3,u),(3,v)}

What is:
• R1 ∪ R2 = {(1,u),(1,v),(2,u),(2,v),(3,u),(3,v)}
• R1 ∩ R2 = {(3,u)}
• R1 - R2 = {(1,u),(2,u),(2,v)}
• R2 - R1 = {(1,v),(3,v)}
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Combination of relations
• Can the relation formed by taking the union or intersection or 

composition of two relations R1 and R2 represented in terms of 
matrix operations? Yes 
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Combination of relations: implementation
Definition. The join, denoted by ∨, of two m-by-n matrices (aij) 

and (bij) of 0s and 1s is an m-by-n matrix (mij) where
• mij = aij ∨ bij for all i,j
= pairwise or (disjunction)

• Example: 
• Let A = {1,2,3} and B = {u,v} and
• R1 = {(1,u), (2,u), (2,v), (3,u)}
• R2 = {(1,v),(3,u),(3,v)}

• MR1 =1 0      MR2 = 0      1          M(R1 ∨ R2)=  1 1
1 1 0      0 1     1
1 0 1      1 1     1
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Combination of relations: implementation
Definition. The meet, denoted by ∧ , of two m-by-n matrices (aij) 

and (bij) of 0s and 1s is an m-by-n matrix (mij) where
• mij = aij ∧ bij for all i,j
= pairwise and (conjunction)

• Example: 
• Let A = {1,2,3} and B = {u,v} and
• R1 = {(1,u), (2,u), (2,v), (3,u)}
• R2 = {(1,v),(3,u),(3,v)}

• MR1 =1 0      MR2 = 0      1        MR1 ∧ MR2= 0 0
1 1 0      0 0     0
1 0 1      1 1     0


