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Propositional logic: review

Propositional logic: a formal language for representing
knowledge and for making logical inferences

A proposition is a statement that is either true or false.

A compound proposition can be created from other
propositions using logical connectives

The truth of a compound proposition is defined by truth
values of elementary propositions and the meaning of
connectives.

The truth table for a compound proposition: table with
entries (rows) for all possible combinations of truth values of
elementary propositions.
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Compound propositions

More complex propositional statements can be build from the
elementary statements using logical connectives.

Logical connectives:

— Negation

— Conjunction
— Disjunction
— Exclusive or
— Implication
— Biconditional
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Compound propositions

e Let p:2isaprime..... T
q: 6isaprime..... F

* Determine the truth value of the following statements:

-p: F
pAq:F
pAr—q T
pvq:T
p®qT
p—>q F
q—op: T
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Constructing the truth table

+ Example: Construct the truth table for
P=>PA(Peq)

©
o]

p pP—>q |TP<Q

(P—>a)A
(Tp<>q)

n(m(-|
n(—(n|H

CS 441 Discrete mathematics for CS

M. Hauskrecht




Constructing the truth table

» Example: Construct the truth table for

P>PA(Peq

Rows: all possible\

combinations of values

@ 9 ﬂq for elementary (P—>)A
propositions: (Tpoq)
T T PN 2" values
T F
F T
F F
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Constructing the truth table

» Example: Construct the truth tab

Po>9PAr(peq) Typically the target
(unknown) compound
proposition and its
p q P P—>q [P<q |(Poa)A
(TP<q)
L) T [N
T F \
F T quxiliary compourF
F F propositions and
their values
N _
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Constructing the truth table

* Examples: Construct a truth table for

P>PA(Peq

P q Tp pP—=>a |7p<q [(p—>a)A
(7p<>Q)

T T F T F F

T F F F T F

F T T T T T

F F T T F F
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Translation

Logic helps us to define the meaning of statements:
— Mathematical or English statements.

Question: How to translate an English sentence to the logic?

Assume a sentence:

— If you are older than 13 or you are with your parents then
you can attend a PG-13 movie.

» The whole sentence is a proposition. It is True.

 But this is not the best. We want to parse the sentence to
elementary statements that are combined with connectives.
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Translation

If you are older than 13 or you are with your parents then you can
attend a PG-13 movie.

Parse:

» If (you are older than 13 or you are with your parents ) then
( you can attend a PG-13 movie)

— A=you are older than 13

— B=you are with your parents

— C=you can attend a PG-13 movie
* Translation: AvB— C
* Why do we want to do this?

e Inference: Assume I know that A v B — C is true and A is
true. Then we can conclude that C is true as well.

 AvB—C and A are both true then C is true
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Translation

* General rule for translation.

» Look for patterns corresponding to logical connectives in the
sentence and use them to define elementary propositions.

* Example:

You can have free coffe@rou are senior citizenit is a Tuesday

Step 1 find logical connectives
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Translation

General rule for translation.

Look for patterns corresponding to logical connectives in the
sentence and use them to define elementary propositions.

Example:
You can have free coffe@ou are senior citizenit is a Tuesday
N
a b ¢

Step 2 break the sentence into elementary propositions
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Translation

General rule for translation .

Look for patterns corresponding to logical connectives in the
sentence and use them to define elementary propositions.

Example:
You can have free coffe@ou are senior citizenit is a Tuesday
Nt
a b c

Step 3 rewrite the sentence in propositional logic

bArc—a
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Translation

* Assume two elementary statements:

— p: you drive over 65 mph ; q: you get a speeding ticket
* Translate each of these sentences to logic

— you do not drive over 65 mph. (—p)

— you drive over 65 mph, but you don't get a speeding
ticket. (pA—q)

you will get a speeding ticket if you drive over 65 mph.

P—q

if you do not drive over 65 mph then you will not get a
speeding ticket.(—p — —q)

driving over 65 mph is sufficient for getting a speeding
ticket. (p—q)

you get a speeding ticket, but you do not drive over 65
mph. (g A~p)
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Computer representation of True and False

We need to encode two values True and False:
* Computers represents data and programs using 0s and 1s
» Logical truth values — True and False
» A bit is sufficient to represent two possible values:
— 0 (False) or 1(True)

» A variable that takes on values 0 or 1 is called a Boolean
variable.

+ Definition: A bit string is a sequence of zero or more bits.
The length of this string is the number of bits in the string.

CS 441 Discrete mathematics for CS M. Hauskrecht




Bitwise operations

* T and F replaced with 1 and 0

P q PVvq PAQ
1 1 1
1 0 1 0
0 1 1 0
0 0 0 0
P P
1 0
0 1
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Bitwise operations
« Examples:
1011 0011 1011 0011 1011 0011
v 01101010 A 01101010 @ 01101010
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« Examples:

Bitwise operations

1011 0011 1011 0011 1011 0011
v 01101010 A 01101010 @ 01101010
11111011
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« Examples:

1011 0011

v 01101010

1111 1011

Bitwise operations

1011 0011 1011 0011
A 01101010 ® 01101010
0010 0010 1101 1001
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Tautology and Contradiction
» Some propositions are interesting since their values in the truth
table are always the same
Definitions:

* A compound proposition that is always true for all possible
truth values of the propositions is called a tautology.

* A compound proposition that is always false is called a
contradiction.

* A proposition that is neither a tautology nor contradiction is
called a contingency.

Example: p v —pis a tautology.

P P pv™p
T F T
F T T
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Tautology and Contradiction
* Some propositions are interesting since their values in the truth
table are always the same
Definitions:

* A compound proposition that is always true for all possible
truth values of the propositions is called a tautology.

* A compound proposition that is always false is called a
contradiction.

* A proposition that is neither a tautology nor contradiction is
called a contingency.

Example: p A —p is a contradiction.

P P pPATP
T F F
F T F
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Equivalence

* We have seen that some of the propositions are equivalent.
Their truth values in the truth table are the same.

* Example: p - q is equivalent to ~q — —p (contrapositive)

p q P—>q -q—>7p
T T |T T
T F |F F
F T |T T
F F T T

» Equivalent statements are important for logical reasoning since
they can be substituted and can help us to make a logical
argument.
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Logical equivalence

Definition: The propositions p and q are called logically
equivalent if p <> q is a tautology (alternately, if they have the
same truth table). The notation p <=> q denotes p and q are
logically equivalent.

Example of important equivalences
* DeMorgan's Laws:

y ) =(pvq) <=>pAr—q

y 2) (prq) <==>7pvq

Example: Negate "The summer in Mexico is cold and sunny"
with DeMorgan's Laws

Solution: ?
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Equivalence

 Definition: The propositions p and q are called logically
equivalent if p <> q is a tautology (alternately, if they have the
same truth table). The notation p <=> q denotes p and q are
logically equivalent.

Example of important equivalences
* DeMorgan's Laws:

y ) «(pvq) <=>pAr—q

y 2) (pnrgq) <=>"pvTq

Example: Negate "The summer in Mexico is cold and sunny"
with DeMorgan's Laws

Solution: "The summer in Mexico is not cold or not sunny."
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Equivalence
Example of important equivalences
* DeMorgan's Laws:
g ) «(pvq) <=>pAr—q
y 2) (pnrgq) <=>"pvTq

To convince us that two propositions are logically equivalent
use the truth table

P q p 7q “(pva)|pATq
T T F F
T F F T
F T T F
F F T T
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Equivalence

Example of important equivalences

* DeMorgan's Laws:

1) «(pvq) <=>pAr—q
2) «(paq) <=>pv—q

To convince us that two propositions are logically equivalent

use the truth table
P q 7p 7q “(pva)|PATq
T T F F F
T F F T F
F T T F F
F F T T T
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Equivalence

Example of important equivalences

* DeMorgan's Laws:

1) «(pvq) <=>pA—q
2) A(pArq) <=>pv—q

To convince us that two propositions are logically equivalent

use the truth table
p q 7p 7q “(pva)|l"PATq
T T F F F F
T F F T F F
F T T F F F
F F T T T T
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Equivalence
Example of important equivalences
* DeMorgan's Laws:
y ) =(pvq) <=>pAr—q
y 2) (prq) <==>7pvq

To convince us that two propositions are logically equivalent

use the truth table
p q “p 7q "(pva)|7PATq
T T F F F F
T F F T F F
F T T F F F
F F T T T T
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Important logical equivalences

* Identity
—-pAT <=p
—-pvF <=p

e Domination
—pvT <=T
—pAF <= F

* Idempotent
—pVvp <=>p
—PApP <D
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Important logical equivalences

Double negation
- ~(p) <=>p

Commutative
-pvq<=>qvVvp
—pPAqQ <=> qQAp

Associative
—(pvqQvr <= pv(qvr)
—(PAQAT <=> pA(qQAT)
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Important logical equivalences

Distributive
- pv(@Aar) <= pvAa(pvr)
- pA(@vr) <= (pAqQV(pAT)

De Morgan
-(pvq) <=>"pAr—q
- (pArq) <=>"pv—

Other useful equivalences
—pvyp<=T
—pAp<=F
-p—>q <=>(CpvQ
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