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CS 441 Discrete Mathematics for CS
Lecture 19

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Midterm exam 2 review

M. HauskrechtCS 441 Discrete mathematics for CS

Course administration

• Midterm exam 2
– Thursday, November 12, 2009
– Covers only the material after midterm 1

• Sequences and Summations
• Integers (Primes, Division, Congruencies)
• Inductive proofs and Recursion
• Counting

Course web page:
http://www.cs.pitt.edu/~milos/courses/cs441/

M. HauskrechtCS 441 Discrete mathematics for CS

Review
• Sequences  and Summations

– Arithmetic and Geometric progression 
– Summations. Arithmetic and Geometric series. 

• Integers
– Primes
– Division, greatest common divisor, least common multiple
– Congruencies and applications
– Countable sets

• Inductive proofs and recursion
• Counting 

– Basic rules
– Pigeonhole principle
– Permutations and Combinations
– Binomial coefficients
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Review questions
Sequences
Question: 
an = n2,   where   n = 1,2,3... 
What are the elements of the sequence.

M. HauskrechtCS 441 Discrete mathematics for CS

Review questions
Sequences
Question: 
an = n2,   where   n = 1,2,3... 
What are the elements of the sequence? 

1, 4, 9, 16, 25, ...
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Review questions
Sequences
Question: 
How is an arithmetic progression defined? 
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Review questions
Sequences
Question: 
How is the arithmetic progression defined? 
an =a+nd for    n=0,1,2…
a, a+d,a+2d, …, a+nd
where a is the initial term and d is common difference, such that 

both belong to R.

Example:
• sn= -1+4n
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Review questions
Sequences
Question: 
How is the arithmetic progression defined? 
an =a+nd for    n=0,1,2…
a, a+d,a+2d, …, a+nd
where a is the initial term and d is common difference, such that 

both belong to R.

Example:
• sn= -1+4n
Sequence: -1, 3, 7, 11, 15, …
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Review questions
Sequences
Question: 
Assume a sequence:
2 5 8 11 14 …
What type of a sequence is this? 
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Review questions
Sequences
Question: 
Assume a sequence:
2 5 8 11 14 …
What type of a sequence is this?
• Aritmetic progression: 

an =a+nd for    n=0,1,2…
an =2+3n    for    n=0,1,2…
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Review question
Sequences;
How is a geometric progression defined? 
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Review questions
Sequences;
How is a geometric progression defined? 

A geometric progression is a sequence of the form: 
a, ar, ar2, ..., ark,  

where a is the initial term, and r is the common ratio.  Both a and r 
belong to  R. 

Example:
• an = ( ½ )n
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Review questions
Sequences;
How is a geometric progression defined? 

A geometric progression is a sequence of the form: 
a, ar, ar2, ..., ark,  

where a is the initial term, and r is the common ratio.  Both a and r 
belong to  R. 

Example:
• an = ( ½ )n

members:  1,½, ¼, 1/8, …..
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Review questions
Summations

Formula for arithmetic series? 
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Review questions
Summations

Formula for arithmetic series? 
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Review questions
Summations

Formula for arithmetic series? 
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Arithmetic series
Example: ∑
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Arithmetic series
Example: ∑

=

=+=
5

1
)32(

j
jS

∑ ∑
= =

=+=
5

1

5

1
32

j j
j



M. HauskrechtCS 441 Discrete mathematics for CS

Arithmetic series
Example: ∑
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Arithmetic series
Example: ∑
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Arithmetic series
Example: ∑
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Arithmetic series
Example: ∑
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Arithmetic series
Example 2: ∑
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Arithmetic series
Example 2: ∑

=

=+=
5

3
)32(

j
jS









+−








+= ∑∑

==

2

1

5

1
)32()32(

jj
jj Trick



M. HauskrechtCS 441 Discrete mathematics for CS

Arithmetic series
Example 2: ∑
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Double summations
Example: ∑∑
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Double summations
Example: ∑∑
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Double summations
Example: ∑∑
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Double summations
Example: ∑∑
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Double summations
Example: ∑∑
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Double summations
Example: ∑∑
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Double summations
Example: ∑∑
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Review questions
Summations

Formula for geometric series? 
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Review questions
Summations

Formula for the geometric series? 
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Review questions
Summations

Formula for geometric series? 
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Review questions
Summations

Formula for an infinite geometric series? 
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Review questions
Summations

Formula for infinite geometric series? 

If  0 < x < 1
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Review questions
Fundamental theorem of Arithmetic: 
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Review questions
Fundamental theorem of Arithmetic: 
• Any positive integer greater than 1 can be expressed as a product 

of prime numbers.
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Review questions
Is a number a prime?
Question: is 97 a prime?
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Review questions
Is a number a prime?
Question: is 97 a prime?

Approach 1: try all positive integers < 97
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Review questions
Is a number a prime?
Question: is 97 a prime?

Approach 1: try all positive integers < 97
Approach 2: try all primes < 97
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Review questions
Is a number a prime?
Question: is 97 a prime?

Approach 1: try all positive integers < 97
Approach 2: try all primes < 97
Approach 3: try all primes smaller than √97
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Review questions
Finding the greatest common divisor of two numbers
Question: what is the gcd of 233 and 541
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Review questions
Finding the greatest common divisor of two numbers
Question: what is the gcd of 233 and 541

Approach 1: factorization and minimum of powers
Approach 2: Euclid algorithm
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Review questions
Congruencies
Question: is 3 and 7 congruent modulo 4? 
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Review questions
Congruencies
Question: is 3 and 7 congruent modulo 4? 

3 mod 4=3
7 mod 4=3
Yes they are congruent.
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Review questions
Countable sets

Is a finite set countable? 
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Review questions
Countable sets

Is a finite set countable?  
Yes.

What other sets are called countable?
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Review questions
Countable sets

Is a finite set countable?  
Yes.

What other sets are called countable?
A set that has the same cardinality as the set of positive integers 

Z+

M. HauskrechtCS 441 Discrete mathematics for CS

Review questions
Countable sets

Is a finite set countable?  
Yes.

What other (infinite) sets are called countable?
A set that has the same cardinality as the set of positive integers 

Z+

How to show the countability of infinite sets?
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Review questions
Countable sets

Is a finite set countable?  
Yes.

What other (infinite) sets are called countable?
A set that has the same cardinality as the set of positive integers 

Z+

How to show the countability of infinite sets?
Show that a bijection in between Z+ and the set exists
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Review questions
Example:
• Assume A = {0, 2, 4, 6, ... } set of even numbers. Is it 

countable? 
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Review questions
Example:
• Assume A = {0, 2, 4, 6, ... } set of even numbers. Is it 

countable? 
• Using the definition: Is there a bijective function f: Z+ → A 
Z+ = {1, 2, 3, 4, …}
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Review questions
Example:
• Assume A = {0, 2, 4, 6, ... } set of even numbers. Is it 

countable? 
• Using the definition: Is there a bijective function f: Z+ → A 
Z+ = {1, 2, 3, 4, …}
• Define a function f:  x → 2x - 2 (an arithmetic progression)

• 1 → 2(1)-2 = 0
• 2 → 2(2)-2 = 2
• 3 → 2(3)-2 = 4      ...

M. HauskrechtCS 441 Discrete mathematics for CS

Review questions
Example:
• Assume A = {0, 2, 4, 6, ... } set of even numbers. Is it 

countable? 
• Using the definition: Is there a bijective function f: Z+ → A 
Z+ = {1, 2, 3, 4, …}
• Define a function f:  x → 2x - 2 (an arithmetic progression)

• 1 → 2(1)-2 = 0
• 2 → 2(2)-2 = 2
• 3 → 2(3)-2 = 4      ...

• one-to-one (why?) 2x-2 = 2y-2 => 2x = 2y =>x = y.
• onto (why?)   ∀a ∈ A, (a+2) / 2 is the pre-image in Z+.
• Therefore | A | = | Z+ |.
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Review questions
Countable sets

Is the set of real numbers countable?
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Review questions
Countable sets

Is the set of real numbers countable?
No !!!
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Review questions
Mathematical induction

• Used to prove statements of the form ∀x P(x) where x ∈ Z+

• What are the two steps of the proof? 
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Review questions
Mathematical induction

• Used to prove statements of the form ∀n P(n) where n ∈ Z+

• What are the two steps of the proof? 

1) Basis step: The proposition P(1) is true.
2) Inductive Step: The implication 

P(k) → P(k+1), is true for all positive k.
• Therefore  we conclude ∀n P(n).
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Mathematical induction
Example: Prove  the sum of first n odd integers is n2 .

i.e. 1 + 3 + 5 + 7 + ... + (2n - 1) = n2 for all positive integers.
Proof:
• What is P(n)?       P(n):   1 + 3 + 5 + 7 + ... + (2n - 1) = n2
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Mathematical induction
Example: Prove  the sum of first n odd integers is n2 .

i.e. 1 + 3 + 5 + 7 + ... + (2n - 1) = n2 for all positive integers.
Proof:
• What is P(n)?       P(n):   1 + 3 + 5 + 7 + ... + (2n - 1) = n2

Basic Step
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Mathematical induction
Example: Prove  the sum of first n odd integers is n2 .

i.e. 1 + 3 + 5 + 7 + ... + (2n - 1) = n2 for all positive integers.
Proof:
• What is P(n)?       P(n):   1 + 3 + 5 + 7 + ... + (2n - 1) = n2

Basis Step Show P(1) is true
• Trivial: 1    =     12
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Mathematical induction
Example: Prove  the sum of first n odd integers is n2 .

i.e. 1 + 3 + 5 + 7 + ... + (2n - 1) = n2 for all positive integers.
Proof:
• What is P(n)?       P(n):   1 + 3 + 5 + 7 + ... + (2n - 1) = n2

Basis Step Show P(1) is true
• Trivial: 1    =     12

Inductive Step Show if P(n) is true then P(n+1) is true for all n.
•
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Mathematical induction
Example: Prove  the sum of first n odd integers is n2 .

i.e. 1 + 3 + 5 + 7 + ... + (2n - 1) = n2 for all positive integers.
Proof:
• What is P(n)?       P(n):   1 + 3 + 5 + 7 + ... + (2n - 1) = n2

Basis Step Show P(1) is true
• Trivial: 1    =     12

Inductive Step Show if P(n) is true then P(n+1) is true for all n.
• Suppose P(n) be true, that is  1 + 3 + 5 + 7 + ... + (2n - 1) = n2

• Show P(n+1):  1 + 3 + 5 + 7 + ... + (2n - 1) + (2n + 1) =(n+1) 2
follows:

• 1 + 3 + 5 + 7 + ... + (2n - 1) + (2n + 1)  =
n2 +                 (2n+1)    =  (n+1)2
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Review questions
Mathematical induction

What is the difference in between regular and strong 
induction?
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Review questions
Mathematical induction

What is the difference in between regular and strong 
induction?

• The regular induction:
– uses the basic step P(1) and
– inductive step P(k) P(k+1)

• Strong induction uses:
– Uses the basis step P(1) and
– inductive step  P(1) and P(2) … P(k) P(k+1)
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Review
Recursive function:
a function on the set of nonnegative integers can be defined by
• 1. Specifying the value of the function at 0
• 2. Giving a rule for finding the function's value at n+1 in terms 

of the function's value at integers i ≤ n.
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Review 
• Example

Define the function:
f(n)  =   2n  +  1    n = 0, 1, 2, ...  

recursively.

• f(0)  =  ?
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Review 
• Example

Define the function:
f(n)  =   2n  +  1    n = 0, 1, 2, ...  

recursively.

• f(0)  =  1
• f(n+1)  =  ?
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Review 
• Example:

Define the function:
f(n)  =   2n  +  1    n = 0, 1, 2, ...  

recursively.

• f(0)  =  1
• f(n+1)  =  f(n) +  2
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Review
Counting

Basic counting rules? 
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Review questions
Counting

Basic counting rules? 
• Product rule
• Sum rule

How do we count with the product rule?

M. HauskrechtCS 441 Discrete mathematics for CS

Review questions
Counting

Basic counting rules? 
• Product rule
• Sum rule

How do we count with product rule?
• n = n1*n2* …* nk

k dependent counts
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Review questions
Counting
Example:
• How many different bit strings of length 7 are there?

• E.g.   1011010 
• Is it possible to decompose the count problem and if yes how?
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Review
Example:
• How many different bit strings of length 7 are there?

• E.g.   1011010 
• Is it possible to decompose the count problem and if yes how?
• Yes.

– Count the number of possible assignments to bit 1 

or
0

1
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Review
Example:
• How many different bit strings of length 7 are there?

• E.g.   1011010 
• Is it possible to decompose the count problem and if yes how?
• Yes.

– Then count the number of possible assignments to bit 2

or
0

1

0

0

0

1
or

Total assignments to first 2 bits: 2*2=4
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Review
Example:
• How many different bit strings of length 7 are there?

• E.g.   1011010 
• Is it possible to decompose the count problem and if yes how?
• Yes.

– Then count the number of possible assignments to bit 7

n = 2* 2 * 2 * 2 * 2 * 2 *2 = 27
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Review questions
Counting

What is the pigeonhole principle?
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Review questions
Counting

What is the pigeonhole principle?
• If there are k+1 objects and k bins. Then there is at least one 

bin with two or more objects.
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Review questions
Counting

Theorem: If N objects are placed into k bins then there is at least 
one bin containing at least   N / k  objects.

Example: 
There are 400 people. What can you say about their birthdays?
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Review questions
Counting

Theorem: If N objects are placed into k bins then there is at least 
one bin containing at least   N / k  objects.

Example: 
There are 400 people. What can you say about their birthdays?
There are at least 2 people who have the same birthday.
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Review questions
Counting

What are Permutations?
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Review questions
Counting

What are Permutations?
Ordered arrangements of n objects

Example: Assume S={A, B, C}
Permutations: ?
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Review questions
Counting

What are Permutations?
Ordered arrangements of n objects

Example: Assume S={A, B, C}
Permutations: 
ABC ACB BAC BCA  CAB CBA
How many: ?
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Review questions
Counting

What are Permutations?
Ordered arrangements of n objects

Example: Assume S={A, B, C}
Permutations: 
ABC ACB BAC BCA  CAB CBA
How many: n!   

3!=3*2=6
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Review questions
Counting

What are k-combinations from set S?
• Unordered collections of k elements from the set of S

Example:   S={A, B, C}
2-combinations: 
AB AC BC
How many are there?

• In our case: 3!/2!=3 
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Review questions
Counting
Example: 

3 goalies, 8 defenders, 12 attackers on the hockey team
How many ways to put together the first line that includes:
One goalie
Two defenders
Three attackers
?


