CS 441 Discrete Mathematics for CS Lecture 19

Midterm exam 2 review

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 441 Discrete mathematics for CS

M. Hauskrecht

Course administration

- Midterm exam 2
 - Thursday, November 12, 2009
 - Covers only the material after midterm 1
 - · Sequences and Summations
 - Integers (Primes, Division, Congruencies)
 - · Inductive proofs and Recursion
 - Counting

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs441/

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review

- Sequences and Summations
 - Arithmetic and Geometric progression
 - Summations. Arithmetic and Geometric series.
- Integers
 - Primes
 - Division, greatest common divisor, least common multiple
 - Congruencies and applications
 - Countable sets
- · Inductive proofs and recursion
- Counting
 - Basic rules
 - Pigeonhole principle
 - Permutations and Combinations
 - Binomial coefficients

CS 441 Discrete mathematics for CS

M. Hauskre

Review questions

Sequences

Question:

 $a_n = n^2$, where n = 1,2,3...

What are the elements of the sequence.

CS 441 Discrete mathematics for CS

M. Hauskrech

Review questions

Sequences

Question:

 $a_n = n^2$, where n = 1, 2, 3...

What are the elements of the sequence?

1, 4, 9, 16, 25, ...

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Sequences

Question:

How is an arithmetic progression defined?

CS 441 Discrete mathematics for CS

Sequences

Question:

How is the arithmetic progression defined?

 $a_n = a + nd$ for n = 0, 1, 2...

a, a+d,a+2d, ..., a+nd

where a is the *initial term* and d is *common difference*, such that both belong to R.

Example:

• $s_n = -1 + 4n$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Sequences

Question:

How is the arithmetic progression defined?

 $a_n = a + nd$ for n = 0, 1, 2...

a, a+d,a+2d, ..., a+nd

where a is the *initial term* and d is *common difference*, such that both belong to R.

Example:

• $S_n = -1 + 4n$

Sequence: -1, 3, 7, 11, 15, ...

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Sequences

Question:

Assume a sequence:

2 5 8 11 14 ...

What type of a sequence is this?

CS 441 Discrete mathematics for CS

1. Hauskre

M. Hauskrecht

Review questions

Sequences

Question:

Assume a sequence:

2 5 8 11 14 ...

What type of a sequence is this?

· Aritmetic progression:

 $a_n = a + nd$ for n = 0, 1, 2... $a_n = 2 + 3n$ for n = 0, 1, 2...

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review question

Sequences;

How is a geometric progression defined?

Review questions

Sequences;

How is a geometric progression defined?

A geometric progression is a sequence of the form:

$$a, ar, ar^{2}, ..., ar^{k},$$

where a is the *initial term*, and r is the *common ratio*. Both a and r belong to R.

Example:

• $a_n = (1/2)^n$

CS 441 Discrete mathematics for CS

M. Hauskrecht

CS 441 Discrete mathematics for CS

Sequences;

How is a geometric progression defined?

A geometric progression is a sequence of the form:

where a is the initial term, and r is the common ratio. Both a and r belong to $\,R.\,$

Example:

• $a_n = (\frac{1}{2})^n$

members: 1,½, ¼, 1/8,

CS 441 Discrete mathematics for CS

Summations

Formula for arithmetic series?

$$S = \sum_{j=1}^{n} j = ?$$

Review questions

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Summations

Formula for arithmetic series?

$$S = \sum_{j=1}^{n} j = \frac{n(n+1)}{2}$$

CS 441 Discrete mathematics for CS

M. Hauskrecht

M. Hauskrecht

Review questions

Summations

Formula for arithmetic series?

$$S = \sum_{j=1}^{n} j = \frac{n(n+1)}{2}$$

$$S = \sum_{j=1}^{n} (a+jd) = na+d \sum_{j=1}^{n} j = na+d \frac{n(n+1)}{2}$$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Arithmetic series

Example:
$$S = \sum_{j=1}^{5} (2+j3) =$$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Arithmetic series

Example:
$$S = \sum_{j=1}^{5} (2 + j3) =$$

= $\sum_{j=1}^{5} 2 + \sum_{j=1}^{5} j3 =$

CS 441 Discrete mathematics for CS

Arithmetic series

Example:
$$S = \sum_{j=1}^{5} (2+j3) =$$

= $\sum_{j=1}^{5} 2 + \sum_{j=1}^{5} j3 =$
= $2\sum_{j=1}^{5} 1 + 3\sum_{j=1}^{5} j =$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Arithmetic series

Example:
$$S = \sum_{j=1}^{5} (2+j3) =$$

 $= \sum_{j=1}^{5} 2 + \sum_{j=1}^{5} j3 =$
 $= 2 \sum_{j=1}^{5} 1 + 3 \sum_{j=1}^{5} j =$
 $= 2*5 + 3 \sum_{j=1}^{5} j =$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Arithmetic series

Example:
$$S = \sum_{j=1}^{5} (2+j3) =$$

$$= \sum_{j=1}^{5} 2 + \sum_{j=1}^{5} j3 =$$

$$= 2 \sum_{j=1}^{5} 1 + 3 \sum_{j=1}^{5} j =$$

$$= 2 * 5 + 3 \sum_{j=1}^{5} j =$$

$$= 10 + 3 \frac{(5+1)}{2} * 5 =$$

CS 441 Discrete mathematics for CS

M. Hauskrecht

M. Hauskrecht

Arithmetic series

Example:
$$S = \sum_{j=1}^{5} (2+j3) =$$

$$= \sum_{j=1}^{5} 2 + \sum_{j=1}^{5} j3 =$$

$$= 2\sum_{j=1}^{5} 1 + 3\sum_{j=1}^{5} j =$$

$$= 2*5 + 3\sum_{j=1}^{5} j =$$

$$= 10 + 3\frac{(5+1)}{2}*5 =$$

$$= 10 + 45 = 55$$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Arithmetic series

Example 2:
$$S = \sum_{j=3}^{5} (2+j3) =$$

CS 441 Discrete mathematics for CS

Arithmetic series

Example 2:
$$S = \sum_{j=3}^{5} (2+j3) =$$

= $\left[\sum_{j=1}^{5} (2+j3)\right] - \left[\sum_{j=1}^{2} (2+j3)\right]$ Trick

CS 441 Discrete mathematics for CS

Arithmetic series

Example 2:
$$S = \sum_{j=3}^{5} (2+j3) =$$

$$= \left[\sum_{j=1}^{5} (2+j3) \right] - \left[\sum_{j=1}^{2} (2+j3) \right]$$

$$= \left[2 \sum_{j=1}^{5} 1 + 3 \sum_{j=1}^{5} j \right] - \left[2 \sum_{j=1}^{2} 1 + 3 \sum_{j=1}^{2} j \right]$$

$$= 55 - 13 = 42$$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Double summations

Example:
$$S = \sum_{i=1}^{4} \sum_{j=1}^{2} (2i - j) =$$

CS 441 Discrete mathematics for CS

Double summations

Example:
$$S = \sum_{i=1}^{4} \sum_{j=1}^{2} (2i - j) =$$

= $\sum_{i=1}^{4} \left[\sum_{j=1}^{2} 2i - \sum_{j=1}^{2} j \right] =$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Double summations

Example:
$$S = \sum_{i=1}^{4} \sum_{j=1}^{2} (2i - j) =$$

$$= \sum_{i=1}^{4} \left[\sum_{j=1}^{2} 2i - \sum_{j=1}^{2} j \right] =$$

$$= \sum_{i=1}^{4} \left[2i \sum_{j=1}^{2} 1 - \sum_{j=1}^{2} j \right] =$$

CS 441 Discrete mathematics for CS

M. Hauskrecht

M. Hauskrecht

Double summations

Example:
$$S = \sum_{j=1}^{4} \sum_{j=1}^{2} (2i - j) =$$

 $= \sum_{i=1}^{4} \left[\sum_{j=1}^{2} 2i - \sum_{j=1}^{2} j \right] =$
 $= \sum_{i=1}^{4} \left[2i \sum_{j=1}^{2} 1 - \sum_{j=1}^{2} j \right] =$
 $= \sum_{i=1}^{4} \left[2i * 2 - \sum_{j=1}^{2} j \right] =$
 $= \sum_{i=1}^{4} \left[2i * 2 - 3 \right] =$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Double summations

Example:
$$S = \sum_{i=1}^{4} \sum_{j=1}^{2} (2i - j) =$$

$$= \sum_{i=1}^{4} \left[\sum_{j=1}^{2} 2i - \sum_{j=1}^{2} j \right] =$$

$$= \sum_{i=1}^{4} \left[2i \sum_{j=1}^{2} 1 - \sum_{j=1}^{2} j \right] =$$

$$= \sum_{i=1}^{4} \left[2i \cdot 2 - \sum_{j=1}^{2} j \right] =$$

$$= \sum_{i=1}^{4} \left[2i \cdot 2 - 3 \right] =$$

$$= \sum_{i=1}^{4} 4i - \sum_{i=1}^{4} 3 =$$

CS 441 Discrete mathematics for CS

Double summations

Example:
$$S = \sum_{i=1}^{4} \sum_{j=1}^{2} (2i - j) =$$

$$= \sum_{i=1}^{4} \left[\sum_{j=1}^{2} 2i - \sum_{j=1}^{2} j \right] =$$

$$= \sum_{i=1}^{4} \left[2i \sum_{j=1}^{2} 1 - \sum_{j=1}^{2} j \right] =$$

$$= \sum_{i=1}^{4} \left[2i \cdot 2 - \sum_{j=1}^{2} j \right] =$$

$$= \sum_{i=1}^{4} \left[2i \cdot 2 - 3 \right] =$$

$$= \sum_{i=1}^{4} 4i - \sum_{i=1}^{4} 3 =$$

$$= 4 \sum_{i=1}^{4} i - 3 \sum_{i=1}^{4} 1 =$$

CS 441 Discrete mathematics for CS

Double summations

Example:
$$S = \sum_{i=1}^{4} \sum_{j=1}^{2} (2i - j) =$$

$$= \sum_{i=1}^{4} \left[\sum_{j=1}^{2} 2i - \sum_{j=1}^{2} j \right] =$$

$$= \sum_{i=1}^{4} \left[2i \sum_{j=1}^{2} 1 - \sum_{j=1}^{2} j \right] =$$

$$= \sum_{i=1}^{4} \left[2i * 2 - \sum_{j=1}^{2} j \right] =$$

$$= \sum_{i=1}^{4} \left[2i * 2 - 3 \right] =$$

$$= \sum_{i=1}^{4} 4i - \sum_{i=1}^{4} 3i =$$

$$= 4 \sum_{i=1}^{4} i - 3 \sum_{i=1}^{4} 1 = 4 * 10 - 3 * 4 = 28$$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Summations

Formula for geometric series?

CS 441 Discrete mathematics for CS

M. Hauskrecht

M. Hauskrecht

Review questions

Summations

Formula for the geometric series?

$$S = \sum_{j=0}^{n} (ar^{j}) = a \sum_{j=0}^{n} r^{j} = ?$$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Summations

Formula for geometric series?

$$S = \sum_{j=0}^{n} (ar^{j}) = a \sum_{j=0}^{n} r^{j} = a \left[\frac{r^{n+1} - 1}{r - 1} \right]$$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Summations

Formula for an infinite geometric series?

CS 441 Discrete mathematics for CS

Summations

Formula for infinite geometric series?

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

If 0 < x < 1

CS 441 Discrete mathematics for CS

Review questions

Fundamental theorem of Arithmetic:

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Fundamental theorem of Arithmetic:

 Any positive integer greater than 1 can be expressed as a product of prime numbers.

CS 441 Discrete mathematics for CS

M. Hauskrecht

M. Hauskrecht

Review questions

Is a number a prime?

Question: is 97 a prime?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Is a number a prime?

Question: is 97 a prime?

Approach 1: try all positive integers < 97

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Is a number a prime?

Question: is 97 a prime?

Approach 1: try all positive integers < 97

Approach 2: try all primes < 97

CS 441 Discrete mathematics for CS

Is a number a prime?

Question: is 97 a prime?

Approach 1: try all positive integers < 97

Approach 2: try all primes < 97

Approach 3: try all primes smaller than $\sqrt{97}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Finding the greatest common divisor of two numbers

Question: what is the gcd of 233 and 541

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Finding the greatest common divisor of two numbers

Question: what is the gcd of 233 and 541

Approach 1: factorization and minimum of powers

Approach 2: Euclid algorithm

CS 441 Discrete mathematics for CS

Review questions

Congruencies

Question: is 3 and 7 congruent modulo 4?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Congruencies

Question: is 3 and 7 congruent modulo 4?

3 mod 4=3

7 mod 4=3

Yes they are congruent.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Countable sets

Is a finite set countable?

CS 441 Discrete mathematics for CS

Countable sets

Is a finite set countable?

Ves.

What other sets are called countable?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Countable sets

Is a finite set countable?

Yes.

What other sets are called countable?

A set that has the same cardinality as the set of positive integers $\mathbf{Z}^{\!+}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Countable sets

Is a finite set countable?

Yes.

What other (infinite) sets are called countable?

A set that has the same cardinality as the set of positive integers Z^{+}

How to show the countability of infinite sets?

CS 441 Discrete mathematics for CS

.

Review questions

Countable sets

Is a finite set countable?

Yes.

What other (infinite) sets are called countable?

A set that has the same cardinality as the set of positive integers \mathbf{Z}^{+}

How to show the countability of infinite sets?

Show that a bijection in between Z+ and the set exists

CS 441 Discrete mathematics for CS

Review questions

Example:

• Assume A = {0, 2, 4, 6, ...} set of even numbers. Is it countable?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Example:

- Assume A = {0, 2, 4, 6, ...} set of even numbers. Is it countable?
- Using the definition: Is there a bijective function $f\!\!:Z^+\to A$ $Z^+=\{1,2,3,4,\ldots\}$

CS 441 Discrete mathematics for CS

Example:

- Assume A = {0, 2, 4, 6, ...} set of even numbers. Is it countable?
- Using the definition: Is there a bijective function $f\colon Z^+\to A$ $Z^+=\{1,\,2,\,3,\,4,\,\ldots\}$
- Define a function f: $x \rightarrow 2x 2$ (an arithmetic progression)
 - $1 \rightarrow 2(1)-2 = 0$
 - $2 \rightarrow 2(2)-2 = 2$
 - $3 \rightarrow 2(3)-2=4$...

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Example:

- Assume A = {0, 2, 4, 6, ...} set of even numbers. Is it countable?
- Using the definition: Is there a bijective function $f: Z^+ \to A$ $Z^+ = \{1, 2, 3, 4, ...\}$
- Define a function f: $x \rightarrow 2x 2$ (an arithmetic progression)
 - $1 \rightarrow 2(1)-2 = 0$
 - $2 \rightarrow 2(2)-2 = 2$
 - $3 \rightarrow 2(3)-2 = 4$
- one-to-one (why?) 2x-2 = 2y-2 => 2x = 2y => x = y.
- onto (why?) $\forall a \in A, (a+2)/2$ is the pre-image in Z^+ .
- Therefore | A | = | Z⁺ |.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Countable sets

Is the set of real numbers countable?

CS 441 Discrete mathematics for CS

//. Hauskre

Review questions

Countable sets

Is the set of real numbers countable? No !!!

CS 441 Discrete mathematics for CS

....

Review questions

Mathematical induction

- Used to prove statements of the form $\forall x \ P(x)$ where $x \in Z^+$
- · What are the two steps of the proof?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Mathematical induction

- Used to prove statements of the form $\forall n \ P(n)$ where $n \in Z^+$
- · What are the two steps of the proof?
 - 1) **Basis step:** The proposition P(1) is true.
 - 2) Inductive Step: The implication

 $P(k) \rightarrow P(k+1)$, is true for all positive k.

• Therefore we conclude $\forall n \ P(n)$.

CS 441 Discrete mathematics for CS

Mathematical induction

Example: Prove the sum of first n odd integers is n^2 . i.e. $1+3+5+7+...+(2n-1)=n^2$ for all positive integers. **Proof:**

• What is P(n)? P(n): $1+3+5+7+...+(2n-1)=n^2$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Mathematical induction

Example: Prove the sum of first n odd integers is n^2 . i.e. $1 + 3 + 5 + 7 + ... + (2n - 1) = n^2$ for all positive integers. **Proof:**

• What is P(n)? P(n): $1+3+5+7+...+(2n-1)=n^2$ Basic Step

CS 441 Discrete mathematics for CS

M. Hauskrecht

Mathematical induction

Example: Prove the sum of first n odd integers is n^2 . i.e. $1+3+5+7+...+(2n-1)=n^2$ for all positive integers. **Proof:**

• What is P(n)? P(n): $1+3+5+7+...+(2n-1)=n^2$ Basis Step Show P(1) is true

• Trivial: 1 = 1²

CS 441 Discrete mathematics for CS

M. Hauskrecht

Mathematical induction

Example: Prove the sum of first n odd integers is n^2 . i.e. $1 + 3 + 5 + 7 + ... + (2n - 1) = n^2$ for all positive integers. **Proof:**

• What is P(n)? P(n): $1+3+5+7+...+(2n-1)=n^2$ Basis Step Show P(1) is true

• Trivial: $1 = 1^2$

Inductive Step Show if P(n) is true then P(n+1) is true for all n.

.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Mathematical induction

Example: Prove the sum of first n odd integers is n^2 . i.e. $1+3+5+7+...+(2n-1)=n^2$ for all positive integers.

Proof:

• What is P(n)? P(n): $1+3+5+7+...+(2n-1)=n^2$ **Basis Step** Show P(1) is true

• Trivial: 1 = 1²

Inductive Step Show if P(n) is true then P(n+1) is true for all n.

- Suppose P(n) be true, that is $1+3+5+7+...+(2n-1)=n^2$
- Show P(n+1): $1+3+5+7+...+(2n-1)+(2n+1)=(n+1)^2$ follows:

$$\underbrace{1+3+5+7+...+(2n-1)}_{n^2} + (2n+1) = (n+1)^2$$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Mathematical induction

What is the difference in between regular and strong induction?

CS 441 Discrete mathematics for CS

Mathematical induction

What is the difference in between regular and strong induction?

- The regular induction:
 - uses the basic step P(1) and
 - inductive step $P(k) \rightarrow P(k+1)$
- · Strong induction uses:
 - Uses the basis step P(1) and
 - inductive step P(1) and P(2) ... $P(k) \rightarrow P(k+1)$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review

Recursive function:

- a function on the set of nonnegative integers can be defined by
- 1. Specifying the value of the function at 0
- 2. Giving a rule for finding the function's value at n+1 in terms of the function's value at integers $i \le n$.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review

• Example

Define the function:

f(n) = 2n + 1 n = 0, 1, 2, ... recursively.

• f(0) = ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review

• Example

Define the function:

$$f(n) = 2n + 1$$
 $n = 0, 1, 2, ...$ recursively.

- f(0) = 1
- f(n+1) = ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review

• Example:

Define the function:

$$f(n) = 2n + 1$$
 $n = 0, 1, 2, ...$ recursively.

- f(0) = 1
- f(n+1) = f(n) + 2

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review

Counting

Basic counting rules?

CS 441 Discrete mathematics for CS

Counting

Basic counting rules?

- · Product rule
- · Sum rule

How do we count with the product rule?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Counting

Basic counting rules?

- · Product rule
- · Sum rule

How do we count with product rule?

•
$$n = n1*n2*...*nk$$

k dependent counts

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Counting

Example:

- How many different bit strings of length 7 are there?
 - E.g. 1011010
- · Is it possible to decompose the count problem and if yes how?

CS 441 Discrete mathematics for CS

1. Hauskre

Review

Example:

- · How many different bit strings of length 7 are there?
 - E.g. 1011010
- · Is it possible to decompose the count problem and if yes how?
- Yes
 - Count the number of possible assignments to bit 1

or [1]

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review

Example:

- How many different bit strings of length 7 are there?
 - E.g. 1011010
- Is it possible to decompose the count problem and if yes how?
- Voc
 - Then count the number of possible assignments to bit 2

Total assignments to first 2 bits: 2*2=4

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review

Example:

- How many different bit strings of length 7 are there?
 - E.g. 1011010
- · Is it possible to decompose the count problem and if yes how?
- Yes.
 - Then count the number of possible assignments to bit 7

$$n = 2*2*2*2*2*2*2*2=2$$

CS 441 Discrete mathematics for CS

Counting

What is the pigeonhole principle?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Counting

What is the pigeonhole principle?

• If there are k+1 objects and k bins. Then there is at least one bin with two or more objects.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Counting

Theorem: If N objects are placed into k bins then there is at least one bin containing at least $\lceil N/k \rceil$ objects.

Example:

There are 400 people. What can you say about their birthdays?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Counting

Theorem: If N objects are placed into k bins then there is at least one bin containing at least $\lceil N/k \rceil$ objects.

Example:

There are 400 people. What can you say about their birthdays? There are at least 2 people who have the same birthday.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Counting

What are Permutations?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Counting

What are Permutations?

Ordered arrangements of n objects

Example: Assume S={A, B, C}

Permutations: ?

CS 441 Discrete mathematics for CS

Counting

What are Permutations?

Ordered arrangements of n objects

Example: Assume S={A, B, C}

Permutations:

ABC ACB BAC BCA CAB CBA

How many: ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Counting

What are Permutations?

Ordered arrangements of n objects

Example: Assume S={A, B, C}

Permutations:

ABC ACB BAC BCA CAB CBA

How many: n! 3!=3*2=6

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Counting

What are k-combinations from set S?

CS 441 Discrete mathematics for CS

//. Hauskre

Review questions

Counting

What are k-combinations from set S?

• Unordered collections of k elements from the set of S

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Counting

What are k-combinations from set S?

• Unordered collections of k elements from the set of S

Example: S={A, B, C} 2-combinations:

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Counting

What are k-combinations from set S?

• Unordered collections of k elements from the set of S

Example: S={A, B, C} 2-combinations: AB AC BC How many are there?

CS 441 Discrete mathematics for CS

Counting

What are k-combinations from set S?

• Unordered collections of k elements from the set of S

Example: S={A, B, C} 2-combinations: AB AC BC

How many are there?

$$C(n,k) = \frac{n!}{(n-k)! \, k!}$$

• In our case: 3!/2!=3

CS 441 Discrete mathematics for CS

M. Hauskrecht

Review questions

Counting Example:

3 goalies, 8 defenders, 12 attackers on the hockey team How many ways to put together the first line that includes:

One goalie

Two defenders

Three attackers

?

CS 441 Discrete mathematics for CS