CS 441 Discrete Mathematics for CS Lecture 14

Counting

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 441 Discrete mathematics for CS

M. Hauskrecht

Course administration

- Homework 6 due today
- Homework 7 is out and due on October 29, 2009

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs441/

CS 441 Discrete mathematics for CS

Counting

- Assume we have a set of objects with certain properties
- Counting is used to determine the number of these objects

Examples:

- Number of available phone numbers with 7 digits in the local calling area
- Number of possible match starters (football, basketball) given the number of team members and their positions

CS 441 Discrete mathematics for CS

M. Hauskrecht

Basic counting rules

- Counting problems may be very hard, not obvious
- Solution:
 - simplify the solution by decomposing the problem
- Two basic decomposition rules:
 - Product rule
 - A count decomposes into a sequence of dependent counts ("each element in the first count is associated with all elements of the second count")
 - Sum rule
 - A count decomposes into a set of independent counts ("elements of counts are alternatives")

CS 441 Discrete mathematics for CS

A count can be broken down into a sequence of dependent counts

• "each element in the first count is associated with all elements of the second count"

Example:

- Assume an auditorium with a seat labeled by a letter and numbers in between 1 to 50 (e.g. A23). We want the total number of seats in the auditorium.
- 26 letters and 50 numbers
- How to count?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Product rule

A count can be broken down into a sequence of dependent counts

• "each element in the first count is associated with all elements of the second count"

Example:

- Assume an auditorium with a seat labeled by a letter and numbers in between 1 to 50 (e.g. A23). We want the total number of seats in the auditorium.
- 26 letters and 50 numbers
- How to count?
- One solution: write down all seats (objects) and count them

A-1 A-2 A-3 ... A-50 B-1... Z-49 Z-50

1 2 3 50 51 ... (n-1) n \leftarrow eventually we get it

CS 441 Discrete mathematics for CS

A count can be broken down into a sequence of dependent counts

• "each element in the first count is associated with all elements of the second count"

Example:

- assume an auditorium with a seat labeled by a letter and numbers in between 1 to 50 (e.g. A23). We want the total number of seats in the auditorium.
- 26 letters and 50 numbers
- A better solution?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Product rule

A count can be broken down into a sequence of dependent counts

• "each element in the first count is associated with all elements of the second count"

Example:

- assume an auditorium with a seat labeled by a letter and numbers in between 1 to 50 (e.g. A23). We want the total number of seats in the auditorium.
- 26 letters and 50 numbers
- A better solution?
- For each letter there are 50 numbers
- So the number of seats is 26*50 = 1300
- **Product rule:** number of letters * number of integers in [1,50]

CS 441 Discrete mathematics for CS

A count can be broken down into a sequence of dependent counts

- "each element in the first count is associated with all elements of the second count"
- **Product rule:** If a count of elements can be broken down into a sequence of dependent counts where the first count yields *n1* elements, the second *n2* elements, and kth count *nk* elements, by the product rule the total number of elements is:
 - n = n1*n2*...*nk

CS 441 Discrete mathematics for CS

M. Hauskrecht

Product rule

Example:

- How many different bit strings of length 7 are there?
 - E.g. 1011010
- Is it possible to decompose the count problem and if yes how?

CS 441 Discrete mathematics for CS

Example:

- How many different bit strings of length 7 are there?
 - E.g. 1011010
- Is it possible to decompose the count problem and if yes how?
- Yes.
 - Count the number of possible assignments to bit 1

CS 441 Discrete mathematics for CS

M. Hauskrecht

Product rule

Example:

- How many different bit strings of length 7 are there?
 - E.g. 1011010
- Is it possible to decompose the count problem and if yes how?

Yes.

- Count the number of possible assignments to bit 1
- For the first bit assignment (say 0) count assignments to bit 2

Total assignments to first 2 bits: 2*2=4

CS 441 Discrete mathematics for CS

Example:

- How many different bit strings of length 7 are there?
 - E.g. 1011010
- Is it possible to decompose the count problem and if yes how?
- · Yes.
 - Count the number of possible assignments to bit 1
 - For the specific first bit count possible assignments to bit 2
 - For the specific first two bits count assignments to bit 3
 - Number of assignments to the first 3 bits: ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Product rule

Example:

- How many different bit strings of length 7 are there?
 - E.g. 1011010
- Is it possible to decompose the count problem and if yes how?
- Yes.
 - Count the number of possible assignments to bit 1
 - For the specific first bit count possible assignments to bit 2
 - For the specific first two bits count assignments to bit 3
 - Number of assignments to the first 3 bits: 2*2*2=8

CS 441 Discrete mathematics for CS

Example:

- How many different bit strings of length 7 are there?
 - E.g. 1011010
- Is it possible to decompose the count problem and if yes how?
- · Yes.
 - Count the number of possible assignments to bit 1
 - For the specific first bit count possible assignments to bit 2
 - For the specific first two bits count assignments to bit 3
 - Gives a sequence of n dependent counts and by the product rule we have:

$$n = 2*2*2*2*2*2*2*2=2$$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Product rule

Example:

The number of subsets of a set S with k elements.

- How to count them?
- **Hint:** think in terms of bitstring representation of a set?
- Assume each element in S is assigned a bit position.
- If A is a subset it can be encoded as a bitstring: if an element is in A then use 1 else put 0
- How many different bitstrings are there?

$$- n = 2*2*...2 = 2^k$$

k bits

CS 441 Discrete mathematics for CS

Sum rule

A count decomposes into a set of independent counts

• "elements of counts are alternatives", they do not depend on each other

Example:

 You need to travel in between city A and B. You can either fly, take a train, or a bus. There are 12 different flights in between A and B, 5 different trains and 10 buses. How many options do you have to get from A to B?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Sum rule

A count decomposes into a set of independent counts

• "elements of counts are alternatives", they do not depend on each other

Example:

- You need to travel in between city A and B. You can either fly, take a train, or a bus. There are 12 different flights in between A and B, 5 different trains and 10 buses. How many options do you have to get from A to B?
- We can take only one type of transportation and for each only one option. The number of options:

•
$$n = 12 + 5 + 10$$

Sum rule:

• n = number of flights + number of trains + number of buses

CS 441 Discrete mathematics for CS

Sum rule

A count decomposes into a set of independent counts

- "elements of counts are alternatives"
- Sum rule: If a count of elements can be broken down into a set of independent counts where the first count yields *n1* elements, the second *n2* elements, and kth count *nk* elements, by the sum rule the total number of elements is:
 - n = n1 + n2 + ... + nk

CS 441 Discrete mathematics for CS

M. Hauskrecht

Beyond basic counting rules

• More complex counting problems typically require a combination of the sum and product rules.

Example: A login password:

- The minimum password length is 6 and the maximum is 8. The password can consist of either an uppercase letter or a digit. There must be at least one digit in the password.
- How many different passwords are there?

CS 441 Discrete mathematics for CS

Beyond basic counting rules

Example: A password for the login name.

- The minimum password length is 6 and the maximum is 8. The password can consist of either an uppercase letter or a digit. There must be at least one digit in the password.
- How to compute the number of possible passwords?

Step 1:

- The password we select has either 6,7 or 8 characters.
- So the total number of valid passwords is by the sum rule:
 - P = P6 + P7 + P8

The number of passwords of length 6,7 and 8 respectively

CS 441 Discrete mathematics for CS

M. Hauskrecht

Beyond basic counting rules

Step 1:

- The password we select has either 6,7 or 8 characters.
- So the total number of valid passwords is by the sum rule:
 - P = P6 + P7 + P8

The number of passwords of length 6,7 and 8 respectively

Step 2

- Assume passwords with 6 characters (upper-case letters):
- How many are there?
- If we let each character to be at any position we have:
 - P6-nodigits = 26⁶ different passwords of length 6

CS 441 Discrete mathematics for CS

Beyond basic counting rules

Step 1:

- The password we select has either 6,7 or 8 characters.
- So the total number of valid passwords is by the sum rule:
 - P = P6 + P7 + P8

The number of passwords of length 6,7 and 8 respectively

Step 2

- Assume passwords with 6 characters (either digits + upper case letters):
- How many are there?
- If we let each character to be at any position we have:
 - P6-all = $(26+10)^6$ = $(36)^6$ different passwords of length 6

CS 441 Discrete mathematics for CS

M. Hauskrecht

Beyond basic counting rules

Step 2

But we must have a password with at least one digit. How to account for it?

- **A trick.** Split the count of all passwords of length 6 into to two mutually exclusive groups:
 - P6-all = P6-digits + P6-nodigits
 - 1. P6-digits count when the password has one or more digits
 - 2. P6-nodigits count when the password has no digits
- We know how to easily compute P6-all and P6-nodigits
 - P6-all = 36^6 and P6-nodigits = 26^6
 - Then P6-digits = P6-all P6-nodigits

CS 441 Discrete mathematics for CS

Beyond basic counting rules

Step 1:

the total number of valid passwords is by the sum rule:

- P = P6 + P7 + P8
- The number of passwords of length 6,7 and 8 respectively

Step 2

The number of valid passwords of length 6:

Analogically:

CS 441 Discrete mathematics for CS

M. Hauskrecht

Inclusion-Exclusion principle

Used in counts where the decomposition yields two count tasks with overlapping elements

• If we used the sum rule some elements would be counted twice

Inclusion-exclusion principle: uses a sum rule and then corrects for the overlapping elements.

We used the principle for the cardinality of the set union.

•
$$|A \cup B| = |A| + |B| - |A \cap B|$$

CS 441 Discrete mathematics for CS

Inclusion-exclusion principle

Example: How many bitstrings of length 8 start either with a bit 1 or end with 00?

- It is easy to count strings that start with 1:
- How many are there? 2⁷
- It is easy to count the strings that end with 00.
- How many are there? 26
- Is it OK to add the two numbers to get the answer? $2^7 + 2^6$
- **No. Overcount**. There are some strings that can both start with 1 and end with 00. These strings are counted in twice.
- How to deal with it? How to correct for overlap?
- How many of strings were counted twice? 2⁵ (1 xxxxx 00)
- Thus we can correct for the overlap simply by using:
- $2^7 + 2^6 2^5 = 128 + 64 32 = 160$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Tree diagrams

Tree: is a structure that consists of a root, branches and leaves.

 Can be useful to represent a counting problem and record the choices we made for alternatives. The count appears on the leaf nodes.

Example:

What is the number of bit strings of length 4 that do not have two consecutive ones.

CS 441 Discrete mathematics for CS

Tree diagrams

Example:

What is the number of bit strings of length 4 that do not have two consecutive ones?

CS 441 Discrete mathematics for CS