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Course administrivia

Weekly homework assignments
• Assigned in class and posted on the course web page
• Due one week later at the beginning of the lecture
• No extension policy

Collaboration policy:
• You may discuss the material covered in the course 

with your fellow students in order to understand it better 
• However, homework assignments should be worked on 

and written up individually
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Course administration

Midterm:
• Tuesday, October 6, 2009 
• Closed book, in-class
• Covers Chapters 1 and 2.1-2.3 of the textbook

No Homework assignment this week

Course web page:
http://www.cs.pitt.edu/~milos/courses/cs441/
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Midterm

• Propositional logic
– Syntax/Logical connectives
– Truth values/tables
– Translation of English sentences
– Equivalences

• Predicate logic
– Syntax, quantified sentences
– Truth values for sentences in predicate logic 
– Translations
– Rules of inference
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Midterm

• Proofs
– Formal proofs
– Informal proofs
– Types of proofs: direct, indirect, contradiction …

• Sets
– Basics: Set subsets, power set …
– Cardinality of the set
– N-tuples
– Cartesian products
– Set operators
– Representation of sets
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Midterm

• Functions
– Basic definition
– Function properties: injection, surjection, bijection
– Function inverse
– Composition of functions
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Midterm

• Types of problems on midterm:
– Knowledge of definitions, concepts, methods

• E.g what is a proposition, what is a set

– Problems similar to homework assignments and 
exercises 

• E.g. prove is n is even than 3n+2 is even

– If needed you will receive a list of logical equivalences 
and/or a list of inference rules 
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Sequences
Definition: A sequence is a function from a subset of the set of 

integers (typically {0,1,2,...} or {1,2,3,...} to a set S.  We use the 
notation an to denote the image of the integer n.  We call an a 
term of the sequence. 

Notation: {an} is used to represent the sequence (note {} is the 
same notation used for sets, so be careful).  {an} represents the 
ordered list a1, a2, a3, ... .

{an}

1      2      3      4       5       6  ….    

a1 a2 a3 a4 a5 a6 ….
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Sequences
Examples:
• (1)   an = n2,   where   n = 1,2,3...

– What are the elements of the sequence? 
1, 4, 9, 16, 25, ...

• (2)   an = (-1) n, where n=0,1,2,3,...
– Elements of the sequence?

1, -1, 1, -1, 1, ...
• 3)   an = 2 n, where  n=0,1,2,3,...

– Elements of the sequence?
1, 2, 4, 8, 16, 32, ...
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Arithmetic progression
Definition: An arithmetic progression is a sequence of the form

a, a+d,a+2d, …, a+nd
where a is the initial term and d is common difference, such that 

both belong to R.

Example:
• sn= -1+4n     for    n=0,1,2,3, …
• members: -1, 3, 7, 11, …
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Geometric progression
Definition A geometric progression is a sequence of the form: 

a, ar, ar2, ..., ark,  
where a is the initial term, and r is the common ratio.  Both a and r 

belong to  R. 

Example:
• an = ( ½ )n        for    n = 0,1,2,3, …

members:  1,½, ¼, 1/8, …..
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Sequences
• Given a sequence finding a rule for generating the sequence is 

not always straightforward

Example:
• Assume the sequence: 1,3,5,7,9, ….
• What is the formula for the sequence? 
• Each term is obtained by adding 2 to the previous term. 
• 1,  1+2=3,  3+2=5, 5+2=7
• It suggests an arithmetic progression:    a+nd

with a=1 and d=2
• an=1+2n    or an=1+2n 
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Sequences
• Given a sequence finding a rule for generating the sequence is 

not always straightforward

Example 2:
• Assume the sequence:   1, 1/3, 1/9, 1/27, …
• What is the sequence? 
• The denominators are powers of 3.

1,  1/3= 1/3,  (1/3)/3=1/(3*3)=1/9, (1/9)/3=1/27 
• What type of progression this suggests? 
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Sequences
• Given a sequence finding a rule for generating the sequence is 

not always straightforward

Example 2:
• Assume the sequence:   1, 1/3, 1/9, 1/27, …
• What is the sequence? 
• The denominators are powers of 3.

1,  1/3= 1/3,  (1/3)/3=1/(3*3)=1/9, (1/9)/3=1/27 
• This suggests a geometric progression:  ark 

with a=1 and r=1/3
• (1/3 )n
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Summations
Summation of the terms of a sequence:

The variable j is referred to as the index of summation. 
• m is the lower limit and 
• n is the upper limit of the summation.

n

n
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Summations
Example:
• 1) Sum the first 7 terms of {n2} where n=1,2,3, ... .
•

• 2) What is the value of  
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Arithmetic series
Definition: The sum of the terms of the arithmetic progression

a, a+d,a+2d, …, a+nd is called an arithmetic series. 

Theorem: The sum of the terms of the arithmetic progression
a, a+d,a+2d, …, a+nd is

• Why? 
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Arithmetic series
Theorem: The sum of the terms of the arithmetic progression

a, a+d,a+2d, …, a+nd is

Proof:
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Arithmetic series
Theorem: The sum of the terms of the arithmetic progression

a, a+d,a+2d, …, a+nd is

Proof:
2
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Arithmetic series
Theorem: The sum of the terms of the arithmetic progression

a, a+d,a+2d, …, a+nd is

Proof:
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Arithmetic series
Theorem: The sum of the terms of the arithmetic progression

a, a+d,a+2d, …, a+nd is

Proof:

∑∑ ∑∑
== ==

+=+=+=
n

j

n

j

n

j

n

j
jdnadjajdaS

11 11
)(

nnnj
n

j
+−+−+++++=∑

=

)1()2(....4321
1

1+(n-1)=n n … n

2
)1()(

1 1

+
+=+=+= ∑ ∑

= =

nndnajdnajdaS
n

j

n

j

M. HauskrechtCS 441 Discrete mathematics for CS

Arithmetic series
Theorem: The sum of the terms of the arithmetic progression

a, a+d,a+2d, …, a+nd is

Proof:
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Arithmetic series
Example: ∑
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Arithmetic series
Example 2: ∑
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Double summations
Example: ∑∑
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Geometric series
Definition: The sum of the terms of a geometric progression a, ar, 

ar2, ..., ark is called a geometric series.

Theorem: The sum of the terms of a geometric progression a, ar, 
ar2, ..., arn is
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Geometric series
Theorem: The sum of the terms of a geometric progression a, ar, 

ar2, ..., arn is

Proof:
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Geometric series
Theorem: The sum of the terms of a geometric progression a, ar, 

ar2, ..., arn is

Proof:

• multiply S by r 









−
−

===
+

= =
∑ ∑ 1

1)(
1

0 0 r
raraarS

nn

j

n

j

jj

132

0
... +

=

++++== ∑ n
n

j

j arararararrrS

n
n

j

j ararararaarS +++++==∑
=

...32

0



M. HauskrechtCS 441 Discrete mathematics for CS

Geometric series
Theorem: The sum of the terms of a geometric progression a, ar, 

ar2, ..., arn is

Proof:

• multiply S by r 

• Substract
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Geometric series
Theorem: The sum of the terms of a geometric progression a, ar, 

ar2, ..., arn is

Proof:

• multiply S by r 

• Substract
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Geometric series
Theorem: The sum of the terms of a geometric progression a, ar, 

ar2, ..., arn is

Proof:

• multiply S by r 

• Substract
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Geometric series
Example:  

General formula: 
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Infinite geometric series
• Infinite geometric series can be computed in the closed form 

for x<1
• How?

• Thus:
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