CS 441 Discrete Mathematics for CS Lecture 9

Sets

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 441 Discrete mathematics for CS

M. Hauskrecht

Course administration

Homework 3 is out

• Due on Friday, February 3, 2005

Midterm 1:

- Wednesday, February 15, 2006
- Covers chapter 1 of the textbook
- Closed book
- Tables for equivalences and rules of inference will be given to you

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs441/

CS 441 Discrete mathematics for CS

Methods of proving theorems

General methods to prove the theorems:

- Direct proof
 - $-p \rightarrow q$ is proved by showing that if p is true then q follows
- Indirect proof
 - Show the contrapositive $\neg q \rightarrow \neg p$. If $\neg q$ holds then $\neg p$ follows
- · Proof by contradiction
 - Show that $(p \land \neg q)$ contradicts the assumptions
- Proof by cases
- Proofs of equivalence
 - $p \leftrightarrow q$ is replaced with $(p \rightarrow q) \land (q \rightarrow p)$

Sometimes one method of proof does not go through as nicely as the other method. You may need to try more than one approach.

CS 441 Discrete mathematics for CS

M Hauskroch

Proof of equivalences

We want to prove $p \leftrightarrow q$

- Statements: p if and only if q.
- Note that $p \leftrightarrow q$ is equivalent to $[(p \rightarrow q) \land (q \rightarrow p)]$
- · Both implications must hold.

Example:

• Integer is odd if and only if n^2 is odd.

Proof of $(p \rightarrow q)$:

- $(p \rightarrow q)$ If n is odd then n^2 is odd
- · we use a direct proof
- Suppose n is odd. Then n = 2k + 1, where k is an integer.
- $n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$
- Therefore, n^2 is odd.

CS 441 Discrete mathematics for CS

Proof of equivalences

We want to prove $p \leftrightarrow q$

- Note that $p \leftrightarrow q$ is equivalent to $[(p \rightarrow q) \land (q \rightarrow p)]$
- Both implications must hold.
- Integer is odd if and only if n^2 is odd.

Proof of $(q \rightarrow p)$:

- $(q \rightarrow p)$: if n^2 is odd then n is odd
- we use an indirect proof $(\neg p \rightarrow \neg q)$ is a contrapositive
- n is even that is n = 2k,
- then $n^2 = 4k^2 = 2(2k^2)$
- Therefore n^2 is even. Done proving the contrapositive.

Since both $(p \rightarrow q)$ and $(q \rightarrow p)$ are true the equivalence is true

CS 441 Discrete mathematics for CS

M. Hauskrecht

Proofs with quantifiers

- Existence proof
 - Constructive
 - Find the example that shows the statement holds.
 - Nonconstructive
 - Show it holds for one example but we do not have the witness example (typically ends with one example or other example)
- Counterexamples:
 - use to disprove a universal statements

CS 441 Discrete mathematics for CS

Sets

CS 441 Discrete mathematics for CS

M. Hauskrecht

Set

- <u>Definition</u>: A set is a (unordered) collection of objects. These objects are sometimes called **elements** or **members** of the set. (Cantor's naive definition)
- Examples:
 - $-\ Vowels\ in\ the\ English\ alphabet$

$$V = \{ a, e, i, o, u \}$$

- First seven prime numbers.

$$X = \{ 2, 3, 5, 7, 11, 13, 17 \}$$

Representing sets

Representing a set:

- 1) Listing the members.
- 2) Definition by property, using set builder notation $\{x \mid x \text{ has property } P\}$.

Example:

- Even integers between 50 and 63.
 - 1) $E = \{50, 52, 54, 56, 58, 60, 62\}$
 - 2) $E = \{x | 50 \le x \le 63, x \text{ is an even integer} \}$

If enumeration of the members is hard we often use ellipses.

Example: a set of integers between 1 and 100

•
$$A = \{1,2,3,...,100\}$$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Important sets in discrete math

• Natural numbers:

$$- N = \{0,1,2,3,\ldots\}$$

• Integers

$$-\mathbf{Z} = \{..., -2, -1, 0, 1, 2, ...\}$$

• Positive integers

$$- \mathbf{Z}^+ = \{1, 2, 3, \dots\}$$

Rational numbers

$$- \mathbf{Q} = \{ p/q \mid p \in Z, q \in Z, q \neq 0 \}$$

- Real numbers
 - -R

CS 441 Discrete mathematics for CS

Russell's paradox

Cantor's naive definition of sets leads to Russell's paradox:

- Let $S = \{ x \mid x \notin x \},$
 - is a set of sets that are not members of themselves.
- Question: Where does the set S belong to?
 - Is S ∈ S or S \notin S?
- Cases
 - $-S \in S$?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Russell's paradox

Cantor's naive definition of sets leads to Russell's paradox:

- Let $S = \{ x \mid x \notin x \},$
 - is a set of sets that are not members of themselves.
- Question: Where does the set S belong to?
 - Is S ∈ S or S \notin S?
- Cases
 - $-S \in S$?: it does not satisfy the condition so it does not hold
 - S ∉ S ?:

CS 441 Discrete mathematics for CS

Russell's paradox

Cantor's naive definition of sets leads to Russell's paradox:

- Let $S = \{ x \mid x \notin x \},$
 - is a set of sets that are not members of themselves.
- Question: Where does the set S belong to?
 - Is $S \in S$ or $S \notin S$?
- Cases
 - $-S \in S$?: S does not satisfy the condition so it does not hold that $S \in S$
 - S \notin S ?: S is included in the set S and hence S \notin S does not hold
- A paradox: we cannot decide if S belongs to S or not
- Russell's answer: theory of types used for sets of sets

CS 441 Discrete mathematics for CS

M. Hauskrecht

Equality

Definition: Two sets are equal if and only if they have the same elements.

Example:

• $\{1,2,3\} = \{3,1,2\} = \{1,2,1,3,2\}$

Note: Duplicates don't contribute anything new to a set, so remove them. The order of the elements in a set doesn't contribute anything new.

Example: Are {1,2,3,4} and {1,2,2,4} equal?

CS 441 Discrete mathematics for CS

Equality

Definition: Two sets are equal if and only if they have the same elements.

Example:

• $\{1,2,3\} = \{3,1,2\} = \{1,2,1,3,2\}$

Note: Duplicates don't contribute anything new to a set, so remove them. The order of the elements in a set doesn't contribute anything new.

Example: Are {1,2,3,4} and {1,2,2,4} equal? **No!**

CS 441 Discrete mathematics for CS

M. Hauskrecht

Special sets

- Special sets:
 - The <u>universal set</u> is denoted by U: the set of all objects under the consideration.
 - The empty set is denoted as \emptyset or $\{\}$.

CS 441 Discrete mathematics for CS

Venn diagrams

- A set can be visualized using **Venn Diagrams**:
 - $V={A,B,C}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

A Subset

• <u>Definition</u>: A set A is said to be a subset of B if and only if every element of A is also an element of B. We use A ⊆ B to indicate A is a subset of B.

• Alternate way to define A is a subset of B:

$$\forall x (x \in A) \rightarrow (x \in B)$$

CS 441 Discrete mathematics for CS

Empty set/Subset properties

Theorem $\emptyset \subset S$

• Empty set is a subset of any set.

Proof:

- Recall the definition of a subset: all elements of a set A must be also elements of B: $\forall x (x \in A) \rightarrow (x \in B)$.
- We must show the following implication holds for any S $\forall x (x \in \emptyset) \rightarrow (x \in S)$
- 9

CS 441 Discrete mathematics for CS

M. Hauskrecht

Empty set/Subset properties

Theorem $\emptyset \subseteq S$

• Empty set is a subset of any set.

Proof:

- Recall the definition of a subset: all elements of a set A must be also elements of B: ∀x (x ∈ A → x ∈ B).
- We must show the following implication holds for any S $\forall x (x \in \emptyset \rightarrow x \in S)$
- Since the empty set does not contain any element, $x \in \emptyset$ is always False
- Then the implication is **always True.**

End of proof

CS 441 Discrete mathematics for CS

Subset properties

Theorem: $S \subseteq S$

• Any set S is a subset of itself

Proof:

- the definition of a subset says: all elements of a set A must be also elements of B: $\forall x (x \in A) \rightarrow (x \in B)$.
- Applying this to S we get:
- $\forall x (x \in S) \rightarrow (x \in S) \dots$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Subset properties

Theorem: $S \subseteq S$

• Any set S is a subset of itself

Proof:

- the definition of a subset says: all elements of a set A must be also elements of B: $\forall x (x \in A \rightarrow x \in B)$.
- Applying this to S we get:
- $\forall x (x \in S \rightarrow x \in S)$ which is trivially **True**
- End of proof

Note on equivalence:

• Two sets are equal if each is a subset of the other set.

CS 441 Discrete mathematics for CS