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Lecture 9

Milos Hauskrecht
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5329 Sennott Square

Sets

CS 441 Discrete mathematics for CS M. Hauskrecht

Course administration

Homework 3 is out
• Due on Friday, February 3, 2005

Midterm 1:
• Wednesday, February 15, 2006
• Covers chapter 1 of the textbook
• Closed book
• Tables for equivalences and rules of inference will be 

given to you

Course web page:
http://www.cs.pitt.edu/~milos/courses/cs441/
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Methods of proving theorems
General methods to prove the theorems:
• Direct proof

– p → q is proved by showing that if p is true then q follows
• Indirect proof

– Show the contrapositive ¬q → ¬p. If ¬q holds then ¬p follows
• Proof by contradiction

– Show that (p ∧ ¬ q) contradicts the assumptions
• Proof by cases
• Proofs of equivalence

– p ↔ q  is replaced with (p → q) ∧ (q → p)

Sometimes one method of proof does not go through as nicely as the 
other method. You may need to try more than one approach.
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Proof of equivalences
We want to prove p ↔ q 
• Statements: p if and only if q.
• Note that p ↔ q   is equivalent to [ (p → q ) ∧ (q → p) ]
• Both implications must hold.

Example: 
• Integer is odd if and only if n^2 is odd.
Proof of (p → q ) :
• (p → q )   If n is odd  then n^2 is odd
• we use a direct proof
• Suppose n is odd. Then n = 2k + 1,where k is an integer.  
• n^2 = (2k + 1)^2  =  4k^2  +  4k  +  1  =  2(2k^2 + 2k)  +  1
• Therefore, n^2  is  odd. 
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Proof of equivalences
We want to prove p ↔ q 
• Note that p ↔ q   is equivalent to [ (p → q ) ∧ (q → p) ]

• Both implications must hold.

• Integer is odd if and only if n^2 is odd.
Proof of (q → p):
• (q → p):   if n^2 is odd then n is odd
• we use an indirect proof   (¬p  → ¬q) is a contrapositive
• n is even that is n = 2k, 
• then  n^2 = 4k^2= 2(2k^2)
• Therefore n^2 is even.  Done proving the contrapositive.
Since both (p → q) and  (q → p) are true the equivalence is true
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Proofs with quantifiers
• Existence proof

– Constructive 
• Find the example that shows the statement holds.

– Nonconstructive
• Show it holds for one example but we do not have the 

witness example (typically ends with one example or 
other example)

• Counterexamples:  
– use to disprove a universal statements 
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Sets
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Set
• Definition: A set is a (unordered) collection of objects.  These 

objects are sometimes called elements or members of the set. 
(Cantor's naive definition)

• Examples:
– Vowels in the English alphabet

V = { a, e, i, o, u }
– First seven prime numbers.

X = { 2, 3, 5, 7, 11, 13, 17 }
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Representing sets
Representing a set:

1) Listing the members.
2) Definition by property, using set builder notation

{x| x has property P}.
Example: 
• Even integers between 50 and 63.

1) E = {50, 52, 54, 56, 58, 60, 62}
2) E = {x| 50 <= x < 63, x is an even integer}

If enumeration of the members is hard we often use ellipses.
Example: a set of integers between 1 and 100 

• A= {1,2,3 …, 100}
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Important sets in discrete math

• Natural numbers:
– N = {0,1,2,3, …}

• Integers
– Z =  {…, -2,-1,0,1,2, …}

• Positive integers
– Z+ = {1,2, 3.…}

• Rational numbers
– Q = {p/q | p ∈ Z, q ∈ Z, q ≠ 0}

• Real numbers
– R
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Russell’s paradox
Cantor's naive definition of sets leads to Russell's paradox:
• Let S = { x | x ∉ x },  

is a set of sets that are not members of themselves. 
• Question: Where does the set S belong to?  

– Is S ∈ S or S ∉ S?
• Cases  

– S ∈ S ?
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Russell’s paradox
Cantor's naive definition of sets leads to Russell's paradox:
• Let S = { x | x ∉ x },  

is a set of sets that are not members of themselves. 
• Question: Where does the set S belong to?  

– Is S ∈ S or S ∉ S?
• Cases  

– S ∈ S ?:   it does not satisfy the condition so it does not hold
– S ∉ S ?:
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Russell’s paradox
Cantor's naive definition of sets leads to Russell's paradox:
• Let S = { x | x ∉ x },  

is a set of sets that are not members of themselves. 
• Question: Where does the set S belong to?  

– Is S ∈ S or S ∉ S?
• Cases  

– S ∈ S ?:   S does not satisfy the condition so it does not hold 
that S ∈ S 

– S ∉ S ?: S is included  in the set S and hence S ∉ S does not 
hold

• A paradox: we cannot decide if S belongs to S or not
• Russell’s answer: theory of types – used for sets of sets
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Equality
Definition: Two sets are equal if and only if they have the same 

elements.

Example:
• {1,2,3} = {3,1,2} = {1,2,1,3,2}

Note:  Duplicates don't contribute anything new to a set, so remove 
them.  The order of the elements in a set doesn't contribute 
anything new.

Example: Are {1,2,3,4} and {1,2,2,4} equal? 
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Equality
Definition: Two sets are equal if and only if they have the same 

elements.

Example:
• {1,2,3} = {3,1,2} = {1,2,1,3,2}

Note:  Duplicates don't contribute anything new to a set, so remove 
them.  The order of the elements in a set doesn't contribute 
anything new.

Example: Are {1,2,3,4} and {1,2,2,4} equal? 
No!
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Special sets
• Special sets:

– The universal set is denoted by U: the set of all objects 
under the consideration.

– The empty set is denoted as ∅ or { }.
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Venn diagrams
• A set can be visualized using Venn Diagrams:

– V={ A, B, C }

U

A
B

C
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A Subset
• Definition: A set A is said to be a subset of B if and only if

every element of A is also an element of B.  We use A ⊆ B to 
indicate A is a subset of B.

• Alternate way to define A is a subset of B: 
∀x (x ∈ A) → (x ∈ B)

U

A

B
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Empty set/Subset properties
Theorem ∅ ⊆ S
• Empty set is a subset of any set. 

Proof:
• Recall the definition of a subset: all elements of a set A must be 

also elements of B:  ∀x (x ∈ A) → (x ∈ B). 
• We must show the following implication holds for any S 

∀x (x ∈ ∅) → (x ∈ S) 
• ?
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Empty set/Subset properties
Theorem ∅ ⊆ S
• Empty set is a subset of any set. 

Proof:
• Recall the definition of a subset: all elements of a set A must be 

also elements of B:  ∀x (x ∈ A → x ∈ B). 
• We must show the following implication holds for any S 

∀x (x ∈ ∅→ x ∈ S) 
• Since the empty set does not contain any element,  x ∈ ∅ is 

always False
• Then the implication is always True.
End of proof
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Subset properties
Theorem: S ⊆ S
• Any set S is a subset of itself

Proof:
• the definition of a subset says: all elements of a set A must be

also elements of B:  ∀x (x ∈ A) → (x ∈ B).  
• Applying this to S we get:
• ∀x (x ∈ S) → (x ∈ S)  …
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Subset properties
Theorem: S ⊆ S
• Any set S is a subset of itself

Proof:
• the definition of a subset says: all elements of a set A must be

also elements of B:  ∀x (x ∈ A → x ∈ B).  
• Applying this to S we get:
• ∀x (x ∈ S → x ∈ S) which is trivially True
• End of proof

Note on equivalence:
• Two sets are equal if each is a subset of the other set. 


