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Course administration

e Homework 1 and Homework 2:
* Due today

* Homework 3
out today, due next week on Friday

* Course web page:
http://www.cs.pitt.edu/~milos/courses/cs441/

CS 441 Discrete mathematics for CS M. Hauskrecht




Theorems and proofs

e Theorem: a statement that can be shown to be true.
— Typically the theorem looks like this:
(plLADP2AP3A...APD) —>(q
—_—

Premises (hypotheses) conclusion

* Example:
Fermat’s Little theorem:
— If p is a prime and a is an integer not divisible by p,
then: a””' =1mod p
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Proofs

Proof:
+ an argument supporting the validity of the statement
 proof of the theorem:
— shows that the conclusion follows from premises
— may use:
* Premises
* Axioms
* Results of other theorems

Formal proofs:

* steps of the proofs follow logically from the set of premises and
axioms

» we assumed formal proofs in propositional logic
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Rules of inference

Rules of inference: logically valid inference patterns

Example;

* Modus Ponens, or the Law of Detachment

» Rule of inference

* Given p is true and the implication p — q is true then q is true.
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Rules of inference

Rules of inference: logically valid inference patterns

Example;

* Modus Ponens, or the Law of Detachment

» Rule of inference

p—=>q
" q

* Given p is true and the implication p — q is true then q is true.

p q pP—>q
False False True
False True True
True False False
True True True
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Rules of inference

Rules of inference: logically valid inference patterns

Example;
* Modus Ponens, or the Law of Detachment
* Rule of inference p
p—=>4q
" q

» Given p is true and the implication p — q is true then q is true.

p q p—>q
False False True
False True True
True False False
True True True
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Rules of inference

Rules of inference: logically valid inference patterns

Example;
* Modus Ponens, or the Law of Detachment
* Rule of inference p
p—>4q
" q

* Given p is true and the implication p — q is true then q is true.

p q pP—>q
False False True
False True True
True False False
True True True
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Applying rules of inference

Text:

* It is not sunny this afternoon and it is colder than yesterday.

* We will go swimming only if it is sunny.

» If we do not go swimming then we will take a canoe trip.

» If we take a canoe trip, then we will be home by sunset.

Propositions:

» p = Itis sunny this afternoon, q =it is colder than yesterday,
r = We will go swimming , s= we will take a canoe trip

» t= We will be home by sunset

Translation:

* Assumptions: "pAQq, r—>p, "r—>s,s>t

* Hypothesis: t
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Proofs using rules of inference

Translations:
e Assumptions: “pAQ, T —>p, "T—>S, 5>t
* Hypothesis: t

Proof:

* 1.7 pAq Hypothesis

* 2.7p Simplification

* 3.r—>p  Hypothesis

* 4. —r Modus tollens (step 2 and 3)

* 5. 7 r—s Hypothesis

e 6.5 Modus ponens (steps 4 and 5)
e 7. s>t Hypothesis

« 8.t Modus ponens (steps 6 and 7)

* end of proof
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Informal proofs

Proving theorems in practice:

» The steps of the proofs are not expressed in any formal language
as e.g. propositional logic

+ Steps are argued less formally using English, mathematical
formulas and so on

* One must always watch the consistency of the argument made,
logic and its rules can often help us to decide the soundness of the
argument if it is in question

* We use (informal) proofs to illustrate different methods of
proving theorems
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Methods of proving theorems

General methods to prove the theorems:

* Direct proof
— p — qis proved by showing that if p is true then q follows
* Indirect proof
— Show the contrapositive ~q — —p. If —~q holds then —p follows
* Proof by contradiction
— Show that (p A — q) contradicts the assumptions
* Proof by cases

* Proofs of equivalence
— p <> q isreplaced with (p > q) A (Q > p)

Sometimes one method of proof does not go through as nicely as the
other method. You may need to try more than one approach.
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Direct proof

* p — qis proved by showing that if p is true then q follows

« Example: Prove that “If n is odd, then n? is odd.”

Proof:
» Assume the premise (hypothesis) is true, i.e. suppose n is odd.
* Thenn =2k + 1, where k is an integer.
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Direct proof

* p — qis proved by showing that if p is true then q follows

« Example: Prove that “If n is odd, then n? is odd.”

Proof:
» Assume the hypothesis is true, i.e. suppose n is odd.
* Then n=2k + 1, where k is an integer.
n?=(2k + 1)?
= 4k?> + 4k + 1
22k +2k) + 1
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Direct proof

* p — qis proved by showing that if p is true then q follows

« Example: Prove that “If n is odd, then n? is odd.”

Proof:
» Assume the hypothesis is true, i.e. suppose n is odd.
* Then n =2k + 1, where k is an integer.

n? = (2k + 1)?
= 4Kk + 4k + 1
= 2(2K>+2K) + 1
* Therefore, n? is odd. O
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Indirect proof

» To show p — q prove its contrapositive ~q — —p
* Why is this correct?
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Indirect proof

* To show p — q prove its contrapositive ~q — —p
* Why? p—>qand—q— —p are equivalent !!!
* Assume —q is true, show that —p is true.

Example: Prove If 3n+ 2 is odd then n is odd.
Proof:
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Indirect proof

» To show p — q prove its contrapositive ~q — —p
* Why? p—>qand—q— —p are equivalent !!!
* Assume —q is true, show that —p is true.

Example: Prove If 3n+ 2 is odd then n is odd.
Proof:
* Assume n is even, that is n = 2k, where k 1is an integer.
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Indirect proof

* To show p — q prove its contrapositive ~q — —p
* Why? p—>qand—q— —p are equivalent !!!
* Assume —q is true, show that —p is true.

Example: Prove If 3n+ 2 is odd then n is odd.

Proof:
» Assume n is even, that is n = 2k, where k is an integer.
* Then: 3n+2=32k)+2
=6k +2
=2(3k+1)
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Indirect proof

» To show p — q prove its contrapositive ~q — —p

Why? p —> qand ~q — —p are equivalent !!!

Assume —q is true, show that —p is true.

Example: Prove If 3n + 2 is odd then n is odd.

Proof:
* Assume n is even, that is n = 2k, where k is an integer.
* Then: 3n+2=32k)+2

=6k +2

=2(3k+1)

e Therefore 3n + 2 is even.
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Indirect proof
* To show p — q prove its contrapositive ~q — —p
* Why? p—>qand—q— —p are equivalent !!!
» Assume —q is true, show that —p is true.

Example: Prove If 3n+ 2 is odd then n is odd.
Proof:

» Assume n is even, that is n = 2k, where k is an integer.

* Then: 3n+2=32k)+2
=6k +2
=2(3k+1)

* Therefore 3n + 2 is even.

* We proved —“nis odd” = —“3n + 2 is odd”. This is
equivalent to “3n + 2 is odd” > “n is odd”. O
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Proof by contradiction

* We want to prove p = q

* The only way to reject (or disprove) p — q is to show that (p A

—q ) can be true

* However, if we manage to prove that either q or — p is True

then we contradict (p A ~q )
— and subsequently p — q must be true

» Proof by contradiction. Show that the assumption (p A —q )

leads either to q or — p which generates a contradiction.
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Proof by contradiction

* We want to prove p — q
* Toreject p — q show that (p A —q ) can be true
» Toreject (p A —q) show that either q or = p is True

Example: Prove If 3n + 2 is odd then n is odd.
Proof:

* Assume 3n + 2 is odd and n is even, that is n = 2k, where k an
integer.
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Proof by contradiction

* We want to prove p = q
* Toreject p — q show that (p A —q ) can be true

* Toreject (p A—q) show that either q or — p is True

Example: Prove If 3n + 2 is odd then n is odd.
Proof:

* Assume 3n + 2 is odd and n is even, that is n = 2k, where k an
integer.

* Then: 3n + 2=3(2k) + 2
=6k +2
=23k +1)

e Thus 3n + 2 is...
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Proof by contradiction

* We want to prove p — q
» To reject p — q show that (p A —q ) can be true
* Toreject (p A ~q) show that either q or — p is True

Example: Prove If 3n + 2 is odd then n is odd.
Proof:

* Assume 3n + 2 is odd and n is even, that is n = 2k, where k an
integer.

* Then: 3n + 2=3(2k) + 2
=6k +2
=23k+1)
* Thus 3n + 2 is even. This is a contradiction with the assumption
that 3n + 2 is odd. Therefore nis odd. 0O
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Vacuous proof

We want to show p - q

* Suppose p (the hypothesis) is always false

* Then p — q is always true.

Reason:

« F— q isalways T, whether q is True or False

Example:

» Let P(n) denotes “ifn>1then n>>n” is TRUE.

» Show that P(0).

Proof:

* For n=0 the premise is False. Thus P(0) is always true.
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Trivial proofs

We want to show p — q

* Suppose the conclusion q is always true

* Then the implication p — q is trivially true.

* Reason:

* p— Tisalways T, whether p is True or False

Example:
* LetP(n) is “ifa>=b thena">=b"”
» Show that P(0)
Proof:
a0 >=b0 is 1=I trivially true.
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Proof by cases

« Wewanttoshowpl vp2v..vpn —q
» Note that this is equivalent to

Pl>g9AP2>PA...A(pn —>q)
* Why?
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Proof by cases

« Wewanttoshowpl vp2v...vpn —q
* Note that this is equivalent to

—pl>9AP2>gA...A(pn —>q)

* Why?

e plvp2v..vpn —»>q <= (useful)

s “(plvp2v...vpn) v q<=> (De Morgan)
* (plATP2A...ATPN) vV q<=> (distributive)

s (plv A(P2V QA ...A(CpnvVv q)<=> (useful)
s pl>PArP2—>9A...A(pn —q)
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Proof by cases

We want to show pl vp2v...vpn —q
* Equivalentto (pl > qQ)A P2 > PA...A(pn —q)
Prove individual cases as before. All of them must be true.

Example: Show that [x||y|=[xy|.

Proof:

* 4 cases:

* x>=0,y>=0 xy >0 and [xy|=xy=[x|]y|

* x>=0,y<0 xy <0 and [xy[=-xy =x (-y)=[x|ly|
* x<0,y>=0 xy <0 and [xy[=-xy =(-x) y=|x||y|
* x<0, ,y <0 xy>0and [xy[= (-x)(-y) =[x]]y|

» All cases proved.
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Proof of equivalences

We want to prove p & q

 Statements: p if and only if q.

* Note that p <> q isequivalentto [(p—>q)A(q—p)]
* Both implications must hold.

Example:

* Integer is odd if and only if n*2 is odd.

Proofof(p >q):

* (p—>q) Ifnisodd thenn”2 is odd

* we use a direct proof

* Suppose n is odd. Then n =2k + 1,where k is an integer.

e n2=02k+1)"2 = 4k"2 + 4k + 1 = 22k"2+2k) + 1
* Therefore, n"2 is odd.
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Proof of equivalences

We want to prove p <> q
» Note that p <> q isequivalentto [(p—>q)A(q—>p)]
* Both implications must hold.

* Integer is odd if and only if "2 is odd.

Proof of (q — p):

* (@q—p): ifn"2is odd then nis odd

* we use an indirect proof (—p — —q) is a contrapositive

* nis even that is n = 2k,

* then n"2 = 4k"2=2(2k"2)

» Therefore n"2 is even. Done proving the contrapositive.

Since both (p = q) and (q — p) are true the equivalence is true
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Proofs with quantifiers

» Existence proof
— Constructive
* Find the example that shows the statement holds.
— Nonconstructive

» Show it holds for one example but we do not have the
witness example (typically ends with one example or
other example)

* Counterexamples:

— use to disprove a universal statements
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