CS 441 Discrete Mathematics for CS Lecture 8

Methods of Proof

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 441 Discrete mathematics for CS

M. Hauskrecht

Course administration

- Homework 1 and Homework 2:
- Due today
- Homework 3 out today, due next week on Friday
- Course web page: http://www.cs.pitt.edu/~milos/courses/cs441/

CS 441 Discrete mathematics for CS

Theorems and proofs

- Theorem: a statement that can be shown to be true.
 - Typically the theorem looks like this:



Example:

Fermat's Little theorem:

- If p is a prime and a is an integer not divisible by p, then: $a^{p-1} \equiv 1 \mod p$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Proofs

Proof:

- an argument supporting the validity of the statement
- proof of the theorem:
 - shows that the conclusion follows from premises
 - may use:
 - Premises
 - Axioms
 - Results of other theorems

Formal proofs:

- steps of the proofs follow logically from the set of premises and axioms
- we assumed formal proofs in propositional logic

CS 441 Discrete mathematics for CS

Rules of inference

Rules of inference: logically valid inference patterns

Example;

- Modus Ponens, or the Law of Detachment
- · Rule of inference

$$p \xrightarrow{p \to q}$$

$$\therefore q$$

• Given p is true and the implication $p \rightarrow q$ is true then q is true.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Rules of inference

Rules of inference: logically valid inference patterns Example;

- Modus Ponens, or the Law of Detachment
- Rule of inference

$$p \rightarrow q$$

∴ q

• Given p is true and the implication $p \rightarrow q$ is true then q is true.

p	q	$p \rightarrow q$
False	False	True
False	True	True
True	False	False
True	True	True

CS 441 Discrete mathematics for CS

Rules of inference

Rules of inference: logically valid inference patterns Example;

• Modus Ponens, or the Law of Detachment

· Rule of inference

$$p \rightarrow q$$

• Given p is true and the implication $p \rightarrow q$ is true then q is true.

p	q	$p \rightarrow q$
False	False	True
False	True	True
True	False	False
True	True	True

CS 441 Discrete mathematics for CS

M. Hauskrecht

Rules of inference

Rules of inference: logically valid inference patterns Example;

- Modus Ponens, or the Law of Detachment
- Rule of inference

$$p \rightarrow q$$

• Given p is true and the implication $p \rightarrow q$ is true then q is true.

p	q	$p \rightarrow q$
False False True	False True False True	True True False True

CS 441 Discrete mathematics for CS

Applying rules of inference

Text:

- It is not sunny this afternoon and it is colder than yesterday.
- We will go swimming only if it is sunny.
- If we do not go swimming then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.

Propositions:

- p = It is sunny this afternoon, q = it is colder than yesterday, r = We will go swimming, s= we will take a canoe trip
- t= We will be home by sunset

Translation:

- Assumptions: $\neg p \land q, r \rightarrow p, \neg r \rightarrow s, s \rightarrow t$
- · Hypothesis: t

CS 441 Discrete mathematics for CS

M. Hauskrecht

Proofs using rules of inference

Translations:

- Assumptions: $\neg p \land q, r \rightarrow p, \neg r \rightarrow s, s \rightarrow t$
- · Hypothesis: t

Proof:

- 1. $\neg p \land q$ Hypothesis
- 2. ¬p Simplification
- 3. $r \rightarrow p$ Hypothesis
- 4. ¬r Modus tollens (step 2 and 3)
- 5. $\neg r \rightarrow s$ Hypothesis
- 6. s Modus ponens (steps 4 and 5)
- 7. $s \rightarrow t$ Hypothesis
- 8. t Modus ponens (steps 6 and 7)
- end of proof

CS 441 Discrete mathematics for CS

Informal proofs

Proving theorems in practice:

- The steps of the proofs are not expressed in any formal language as e.g. propositional logic
- Steps are argued less formally using English, mathematical formulas and so on
- One must always watch the consistency of the argument made, logic and its rules can often help us to decide the soundness of the argument if it is in question
- We use (informal) proofs to illustrate different methods of proving theorems

CS 441 Discrete mathematics for CS

M. Hauskrecht

Methods of proving theorems

General methods to prove the theorems:

- Direct proof
 - $p \rightarrow q$ is proved by showing that if p is true then q follows
- Indirect proof
 - Show the contrapositive $\neg q \rightarrow \neg p$. If $\neg q$ holds then $\neg p$ follows
- Proof by contradiction
 - Show that $(p \wedge \neg\, q)$ contradicts the assumptions
- Proof by cases
- Proofs of equivalence
 - $p \leftrightarrow q$ is replaced with $(p \rightarrow q) \land (q \rightarrow p)$

Sometimes one method of proof does not go through as nicely as the other method. You may need to try more than one approach.

CS 441 Discrete mathematics for CS

Direct proof

- $p \rightarrow q$ is proved by showing that if p is true then q follows
- Example: Prove that "If n is odd, then n² is odd."

Proof:

- Assume the premise (hypothesis) is true, i.e. suppose n is odd.
- Then n = 2k + 1, where k is an integer.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Direct proof

- $p \rightarrow q$ is proved by showing that if p is true then q follows
- Example: Prove that "If n is odd, then n² is odd."

Proof:

- Assume the hypothesis is true, i.e. suppose n is odd.
- Then n = 2k + 1, where k is an integer.

$$n^{2} = (2k + 1)^{2}$$

$$= 4k^{2} + 4k + 1$$

$$= 2(2k^{2} + 2k) + 1$$

CS 441 Discrete mathematics for CS

Direct proof

- $p \rightarrow q$ is proved by showing that if p is true then q follows
- Example: Prove that "If n is odd, then n² is odd."

Proof:

- Assume the hypothesis is true, i.e. suppose n is odd.
- Then n = 2k + 1, where k is an integer.

$$n^{2} = (2k + 1)^{2}$$

$$= 4k^{2} + 4k + 1$$

$$= 2(2k^{2} + 2k) + 1$$

• Therefore, n² is odd.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Indirect proof

- To show $p \rightarrow q$ prove its contrapositive $\neg q \rightarrow \neg p$
- Why is this correct?

CS 441 Discrete mathematics for CS

Indirect proof

- To show $p \rightarrow q$ prove its contrapositive $\neg q \rightarrow \neg p$
- Why? $p \rightarrow q$ and $\neg q \rightarrow \neg p$ are equivalent !!!
- Assume ¬q is true, show that ¬p is true.

Example: Prove If 3n + 2 is odd then n is odd.

Proof:

CS 441 Discrete mathematics for CS

M. Hauskrecht

Indirect proof

- To show $p \rightarrow q$ prove its contrapositive $\neg q \rightarrow \neg p$
- Why? $p \rightarrow q$ and $\neg q \rightarrow \neg p$ are equivalent !!!
- Assume $\neg q$ is true, show that $\neg p$ is true.

Example: Prove If 3n + 2 is odd then **n** is odd.

Proof:

• Assume **n** is even, that is n = 2k, where k is an integer.

CS 441 Discrete mathematics for CS

Indirect proof

- To show $p \rightarrow q$ prove its contrapositive $\neg q \rightarrow \neg p$
- Why? $p \rightarrow q$ and $\neg q \rightarrow \neg p$ are equivalent !!!
- Assume ¬q is true, show that ¬p is true.

Example: Prove If 3n + 2 is odd then n is odd.

Proof:

- Assume n is even, that is n = 2k, where k is an integer.
- Then: 3n + 2 = 3(2k) + 2= 6k + 2= 2(3k+1)

CS 441 Discrete mathematics for CS

M. Hauskrecht

Indirect proof

- To show $p \rightarrow q$ prove its contrapositive $\neg q \rightarrow \neg p$
- Why? $p \rightarrow q$ and $\neg q \rightarrow \neg p$ are equivalent !!!
- Assume $\neg q$ is true, show that $\neg p$ is true.

Example: Prove If 3n + 2 is odd then n is odd.

Proof:

- Assume n is even, that is n = 2k, where k is an integer.
- Then: 3n + 2 = 3(2k) + 2= 6k + 2= 2(3k+1)
- Therefore 3n + 2 is even.

CS 441 Discrete mathematics for CS

Indirect proof

- To show $p \rightarrow q$ prove its contrapositive $\neg q \rightarrow \neg p$
- Why? $p \rightarrow q$ and $\neg q \rightarrow \neg p$ are equivalent !!!
- Assume ¬q is true, show that ¬p is true.

Example: Prove If 3n + 2 is odd then n is odd.

Proof:

- Assume n is even, that is n = 2k, where k is an integer.
- Then: 3n + 2 = 3(2k) + 2= 6k + 2= 2(3k+1)
- Therefore 3n + 2 is even.
- We proved \neg "n is odd" $\rightarrow \neg$ "3n + 2 is odd". This is equivalent to "3n + 2 is odd" \rightarrow "n is odd".

CS 441 Discrete mathematics for CS

M. Hauskrecht

Proof by contradiction

- We want to prove $p \rightarrow q$
- The only way to reject (or disprove) $p \rightarrow q$ is to show that $(p \land \neg q)$ can be true
- However, if we manage to prove that either q or $\neg p$ is True then we contradict $(p \land \neg q)$
 - and subsequently $p \rightarrow q$ must be true
- Proof by contradiction. Show that the assumption $(\mathbf{p} \wedge \neg \mathbf{q})$ leads either to q or \neg p which generates a contradiction.

CS 441 Discrete mathematics for CS

Proof by contradiction

- We want to prove $p \rightarrow q$
- To reject $p \rightarrow q$ show that $(p \land \neg q)$ can be true
- To reject $(p \land \neg q)$ show that either q or $\neg p$ is True

Example: Prove If 3n + 2 is odd then n is odd.

Proof:

Assume 3n + 2 is odd and n is even, that is n = 2k, where k an integer.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Proof by contradiction

- We want to prove $p \rightarrow q$
- To reject $p \rightarrow q$ show that $(p \land \neg q)$ can be true
- To reject $(p \land \neg q)$ show that either $q \circ r \neg p$ is True

Example: Prove If 3n + 2 is odd then n is odd.

Proof:

- Assume 3n + 2 is odd and n is even, that is n = 2k, where k an integer.
- Then: 3n + 2 = 3(2k) + 2= 6k + 2= 2(3k + 1)
- Thus 3n + 2 is...

CS 441 Discrete mathematics for CS

Proof by contradiction

- We want to prove $p \rightarrow q$
- To reject $\mathbf{p} \to \mathbf{q}$ show that $(\mathbf{p} \wedge \neg \mathbf{q})$ can be true
- To reject $(p \land \neg q)$ show that either q or $\neg p$ is True

Example: Prove If 3n + 2 is odd then n is odd.

Proof:

- Assume 3n + 2 is odd and n is even, that is n = 2k, where k an integer.
- Then: 3n + 2 = 3(2k) + 2= 6k + 2= 2(3k + 1)
- Thus 3n + 2 is even. This is a contradiction with the assumption that 3n + 2 is odd. Therefore n is odd.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Vacuous proof

We want to show $p \rightarrow q$

- Suppose p (the hypothesis) is always false
- Then $p \rightarrow q$ is always true.

Reason:

• $F \rightarrow q$ is always T, whether q is True or False

Example:

- Let P(n) denotes "if n > 1 then $n^2 > n$ " is TRUE.
- Show that P(0).

Proof:

• For n=0 the premise is False. Thus P(0) is always true.

CS 441 Discrete mathematics for CS

Trivial proofs

We want to show $p \rightarrow q$

- Suppose the conclusion q is always true
- Then the implication $p \rightarrow q$ is trivially true.
- · Reason:
- $p \rightarrow T$ is always T, whether p is True or False

Example:

- Let P(n) is "if $a \ge b$ then $a^n \ge b^n$ "
- Show that P(0)

Proof:

 $a^0 >= b^0$ is 1=1 trivially true.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Proof by cases

- We want to show $p1 \lor p2 \lor ... \lor pn \rightarrow q$
- Note that this is equivalent to

$$(p1 \rightarrow q) \land (p2 \rightarrow q) \land ... \land (pn \rightarrow q)$$

· Why?

CS 441 Discrete mathematics for CS

Proof by cases

- We want to show $p1 \lor p2 \lor ... \lor pn \rightarrow q$
- Note that this is equivalent to
 (p1 → q) ∧ (p2 → q) ∧ ... ∧ (pn → q)
- · Why?
- $p1 \lor p2 \lor ... \lor pn \rightarrow q \iff$ (useful)
- $\neg (p1 \lor p2 \lor ... \lor pn) \lor q \iff$ (De Morgan)
- $(\neg p1 \land \neg p2 \land ... \land \neg pn) \lor q \iff$ (distributive)
- $(\neg p1 \lor q) \land (\neg p2 \lor q) \land ... \land (\neg pn \lor q) \iff (useful)$
- $(p1 \rightarrow q) \land (p2 \rightarrow q) \land ... \land (pn \rightarrow q)$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Proof by cases

We want to show $p1 \lor p2 \lor ... \lor pn \rightarrow q$

• Equivalent to $(p1 \rightarrow q) \land (p2 \rightarrow q) \land ... \land (pn \rightarrow q)$

Prove individual cases as before. All of them must be true.

Example: Show that |x||y|=|xy|.

Proof:

- 4 cases:
- $x \ge 0$, $y \ge 0$ and |xy| = xy = |x||y|
- $x \ge 0$, y < 0 xy < 0 and |xy| = -xy = x (-y) = |x||y|
- x<0, y>=0 xy<0 and |xy|=-xy=(-x) y=|x||y|
- x<0, , y<0 xy>0 and |xy|=(-x)(-y)=|x||y|
- All cases proved.

CS 441 Discrete mathematics for CS

Proof of equivalences

We want to prove $p \leftrightarrow q$

- Statements: p if and only if q.
- Note that $p \leftrightarrow q$ is equivalent to $[(p \rightarrow q) \land (q \rightarrow p)]$
- Both implications must hold.

Example:

• Integer is odd if and only if n^2 is odd.

Proof of $(p \rightarrow q)$:

- $(p \rightarrow q)$ If n is odd then n^2 is odd
- we use a direct proof
- Suppose n is odd. Then n = 2k + 1, where k is an integer.
- $n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$
- Therefore, n^2 is odd.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Proof of equivalences

We want to prove $p \leftrightarrow q$

- Note that $p \leftrightarrow q$ is equivalent to $[(p \rightarrow q) \land (q \rightarrow p)]$
- Both implications must hold.
- Integer is odd if and only if n^2 is odd.

Proof of $(q \rightarrow p)$:

- $(q \rightarrow p)$: if n^2 is odd then n is odd
- we use an indirect proof $(\neg p \rightarrow \neg q)$ is a contrapositive
- n is even that is n = 2k,
- then $n^2 = 4k^2 = 2(2k^2)$
- Therefore n^2 is even. Done proving the contrapositive.

Since both $(p \rightarrow q)$ and $(q \rightarrow p)$ are true the equivalence is true

CS 441 Discrete mathematics for CS

Proofs with quantifiers

• Existence proof

- Constructive
 - Find the example that shows the statement holds.
- Nonconstructive
 - Show it holds for one example but we do not have the witness example (typically ends with one example or other example)

• Counterexamples:

- use to disprove a universal statements

CS 441 Discrete mathematics for CS