CS 441 Discrete Mathematics for CS Lecture 7 ### **Methods of Proof** #### Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square CS 441 Discrete mathematics for CS M. Hauskrecht ## Theorems and proofs - The truth value of some statement about the world is obvious and easy to assign - The truth of other statements may not be obvious, But it may still follow (be derived) from known facts about the world To show the truth value of such a statement following from other statements we need to provide a correct supporting argument - a proof #### **Problem:** • It is easy to make a mistake and argue the support incorrectly. #### **Important questions:** - When is the argument correct? - How to construct a correct argument, what method to use? CS 441 Discrete mathematics for CS ## Theorems and proofs - Theorem: a statement that can be shown to be true. - Typically the theorem looks like this: • Example: Fermat's Little theorem: - If p is a prime and a is an integer not divisible by p, then: $a^{p-1} \equiv 1 \mod p$ CS 441 Discrete mathematics for CS M. Hauskrecht ## Formal proofs #### **Proof:** - an argument supporting the validity of the statement - proof of the theorem: - shows that the conclusion follows from premises - may use: - Premises - Axioms - Results of other theorems #### **Formal proofs:** - steps of the proofs follow logically from the set of premises and axioms - we assume formal proofs in propositional logic CS 441 Discrete mathematics for CS ## Formal proofs - Formal proofs: - show that steps of the proofs follow logically from the set of hypotheses and axioms • In the class we assume formal proofs in propositional logic CS 441 Discrete mathematics for CS M. Hauskrecht ## **Rules of inference** Rules of inference: logically valid inference patterns #### Example; - Modus Ponens, or the Law of Detachment - · Rule of inference $$p$$ $$p \to q$$ $$\therefore q$$ • Given p is true and the implication $p \rightarrow q$ is true then q is true. CS 441 Discrete mathematics for CS # Rules of inference: logically valid inference patterns **Example**; • Modus Ponens, or the Law of Detachment Rule of inference $$p \rightarrow q$$ ∴ q • Given p is true and the implication $p \rightarrow q$ is true then q is true. | p | q | $p \rightarrow q$ | |----------------|---------------|-------------------| | False
False | False | True
True | | True | True
False | False | | True | True | True | CS 441 Discrete mathematics for CS M. Hauskrecht ## **Rules of inference** # Rules of inference: logically valid inference patterns Example; - Modus Ponens, or the Law of Detachment - Rule of inference $$p \rightarrow q$$ • Given p is true and the implication $p \rightarrow q$ is true then q is true. | p | q | $p \rightarrow q$ | |-------|-------|-------------------| | False | False | True | | False | True | True | | True | False | False | | True | True | True | CS 441 Discrete mathematics for CS # Rules of inference: logically valid inference patterns Example; • Modus Ponens, or the Law of Detachment · Rule of inference $$p \rightarrow q$$ ∴ q • Given p is true and the implication $p \rightarrow q$ is true then q is true. | p | q | $p \rightarrow q$ | |------------------------|--------------------------------|-------------------------------| | False
False
True | False
True
False
True | True
True
False
True | CS 441 Discrete mathematics for CS M. Hauskrecht ## **Rules of inference** ### Rules of inference: logically valid inference patterns #### Example; - Modus Ponens, or the Law of Detachment - Rules of inference $$p$$ $$p \to q$$ $$\therefore q$$ - Given p is true and the implication $p \rightarrow q$ is true then q is true. - Tautology Form: $(p \land (p \rightarrow q)) \rightarrow q$ CS 441 Discrete mathematics for CS • Addition $$p \rightarrow (p \lor q)$$ n - **Example:** It is below freezing now. Therefore, it is below freezing or raining snow. - Simplification $$(p \land q) \rightarrow p$$ $$p \wedge q$$ • **Example:** It is below freezing and snowing. Therefore it is below freezing. CS 441 Discrete mathematics for CS M. Hauskrecht ## **Rules of inference** Modus Tollens $$[\neg q \land (p \to q)] \to \neg p$$ $$\begin{array}{c} \underline{\mathbf{p} \to \mathbf{q}} \\ \therefore \neg \mathbf{p} \end{array}$$ · Hypothetical Syllogism $$[(p \to q) \land (q \to r)] \to (p \to r)$$ $$p \rightarrow q$$ $$q \rightarrow r$$ $$\therefore p \rightarrow r$$ Disjunctive Syllogism $$[(p \lor q) \land \neg p] \to q$$ $$p \vee q$$ CS 441 Discrete mathematics for CS - A **valid argument** is one built using the rules of inference from premises (hypotheses). When all premises are true the argument leads to a correct conclusion. - $(p1 \land p2 \land p3 \land ... \land pn) \rightarrow q$ - However, if one or more of the premises is false the conclusion may be incorrect. - How to use the rules of inference? CS 441 Discrete mathematics for CS M. Hauskrecht # Applying rules of inference **Assume** the following statements (hypotheses): - It is not sunny this afternoon and it is colder than yesterday. - We will go swimming only if it is sunny. - If we do not go swimming then we will take a canoe trip. - If we take a canoe trip, then we will be home by sunset. **Show** that all these lead to a conclusion: • We will be home by sunset. CS 441 Discrete mathematics for CS # Applying rules of inference #### **Text:** - It is not sunny this afternoon and it is colder than yesterday. - We will go swimming only if it is sunny. - If we do not go swimming then we will take a canoe trip. - If we take a canoe trip, then we will be home by sunset. #### **Propositions:** - p = It is sunny this afternoon, q = it is colder than yesterday, r = We will go swimming, s= we will take a canoe trip - t= We will be home by sunset #### **Translation:** - Assumptions: $\neg p \land q, r \rightarrow p, \neg r \rightarrow s, s \rightarrow t$ - · Hypothesis: t CS 441 Discrete mathematics for CS M. Hauskrecht ## Applying rules of inference - Approach: - p = It is sunny this afternoon, q = it is colder than yesterday, r = We will go swimming, s= we will take a canoe trip - t= We will be home by sunset - Translations: - Assumptions: $\neg p \land q, r \rightarrow p, \neg r \rightarrow s, s \rightarrow t$ - Hypothesis: t #### Translation: "We will go swimming only if it is sunny". - Ambiguity: $r \rightarrow p$ or $p \rightarrow r$? - Sunny is a must before we go swimming - Thus, if we indeed go swimming it must be sunny, therefore r → p CS 441 Discrete mathematics for CS ## **Proofs using rules of inference** #### **Translations:** - Assumptions: $\neg p \land q, r \rightarrow p, \neg r \rightarrow s, s \rightarrow t$ - · Hypothesis: t #### **Proof:** - $1. \neg p \land q$ Hypothesis - 2. ¬p Simplification - 3. $r \rightarrow p$ Hypothesis - 4. ¬r Modus tollens (step 2 and 3) - 5. $\neg r \rightarrow s$ Hypothesis - 6. s Modus ponens (steps 4 and 5) - 7. $s \rightarrow t$ Hypothesis - 8. t Modus ponens (steps 6 and 7) - end of proof CS 441 Discrete mathematics for CS