CS 441 Discrete Mathematics for CS Lecture 5

Predicate logic. Translation.

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 441 Discrete mathematics for CS

M. Hauskrecht

Predicate logic

- Explicitly models objects and their properties
- Allows to make quantified statements

Basic building blocks of the predicate logic:

- Constant –models a specific object
 - Examples: "John", "France", "7"
- Variable represents object of specific type (defined by the universe of discourse)

Examples: x, y

(universe of discourse can be people, students, cars)

• **Predicate** - over one, two or many variables or constants.

Examples: Red(car23), student(x), married(John,Ann)

CS 441 Discrete mathematics for CS

Predicates

Predicates represent properties or relations among objects A predicate, say P(x), assigns a value **true or false** to each x depending on whether the property holds or not for a specific x.

Example:

- Assume **Student(x)**
 - Student(John) T (if John is a student)
 - Student(Ann) T (if Ann is indeed a student)
 - Student(Jane) F (if Jane is not a student)
 - ...
- Student(x) is **not a proposition**,
- Student(Ann) is a proposition
- $\forall x \text{ Student}(x) \text{ is } \mathbf{a} \text{ proposition}$
- $\exists x \text{ Student}(x) \text{ is a proposition}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Statements in predicate logic

Compound statements are obtained via logical connectives

Examples:

Student(Ann) ∧ Student(Jane)

• Translation: ?

CS 441 Discrete mathematics for CS

Statements in predicate logic

Compound statements are obtained via logical connectives

Examples:

Student(Ann) ∧ Student(Jane)

- Translation: "Both Ann and Jane are students"
- Proposition: ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Statements in predicate logic

Compound statements are obtained via logical connectives

Examples:

Student(Ann) ∧ Student(Jane)

- Translation: "Both Ann and Jane are students"
- Proposition: yes.

 $Country(Sienna) \lor River(Sienna)$

• Translation: ?

CS 441 Discrete mathematics for CS

Statements in predicate logic

Compound statements are obtained via logical connectives

Examples:

Student(Ann) ∧ Student(Jane)

• Translation: "Both Ann and Jane are students"

• Proposition: yes.

Country(Sienna) \(\times \text{River(Sienna)} \)

• Translation: "Sienna is a country or a river"

• Proposition: ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Statements in predicate logic

Compound statements are obtained via logical connectives

Examples:

 $Student(Ann) \wedge Student(Jane)$

• Translation: "Both Ann and Jane are students"

• Proposition: yes.

 $Country(Sienna) \lor River(Sienna)$

• Translation: "Sienna is a country or a river"

• Proposition: yes.

CS-major(x) \rightarrow Student(x)

• Translation: ?

CS 441 Discrete mathematics for CS

Statements in predicate logic

Compound statements are obtained via logical connectives

Examples:

Student(Ann) ∧ Student(Jane)

- Translation: "Both Ann and Jane are students"
- **Proposition:** yes.

Country(Sienna) ∨ River(Sienna)

- Translation: "Sienna is a country or a river"
- **Proposition:** yes.

CS-major(x) \rightarrow Student(x)

- Translation: "if x is a CS-major then x is a student"
- **Proposition:** ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Statements in predicate logic

Compound statements are obtained via logical connectives

Examples:

 $Student(Ann) \wedge Student(Jane)$

- Translation: "Both Ann and Jane are students"
- **Proposition:** yes.

Country(Sienna) ∨ River(Sienna)

- Translation: "Sienna is a country or a river"
- Proposition: yes.

CS-major(x) \rightarrow Student(x)

- **Translation:** "if x is a CS-major then x is a student"
- **Proposition:** no.

CS 441 Discrete mathematics for CS

Quantified statements

Predicate logic lets us make statements about groups of objects

- CS-major(x) \rightarrow Student(x)
 - **Translation:** "if x is a CS-major then x is a student"
 - Proposition: ?

•

CS 441 Discrete mathematics for CS

M. Hauskrecht

Quantified statements

Predicate logic lets us make statements about groups of objects

- CS-major(x) \rightarrow Student(x)
 - **Translation:** "if x is a CS-major then x is a student"
 - Proposition: no.
- $\forall x \text{ CS-major}(x) \rightarrow \text{Student}(x)$
 - Translation: "(For all people it holds that) if a person is a CS-major then she is a student."
 - Proposition: ?

CS 441 Discrete mathematics for CS

Quantified statements

Predicate logic lets us make statements about groups of objects

Universally quantified statement

- CS-major(x) \rightarrow Student(x)
 - **Translation:** "if x is a CS-major then x is a student"
 - Proposition: no.
- $\forall x \text{ CS-major}(x) \rightarrow \text{Student}(x)$
 - Translation: "(For all people it holds that) if a person is a CS-major then she is a student."
 - Proposition: yes.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Quantified statements

Statements about groups of objects

Existentially quantified statement

- CS-Upitt-graduate $(x) \wedge \text{Honor-student}(x)$
 - Translation: "x is a CS-Upitt-graduate and x is an honor student"
 - Proposition: ?

CS 441 Discrete mathematics for CS

Quantified statements

Statements about groups of objects

Existentially quantified statement

- CS-Upitt-graduate $(x) \wedge \text{Honor-student}(x)$
 - Translation: "x is a CS-Upitt-graduate and x is an honor student"
 - Proposition: no.
- $\exists x \text{ CS-Upitt-graduate } (x) \land \text{Honor-student}(x)$
 - **Translation:** "There is a person who is a CS-Upitt-graduate and who is also an honor student."
 - Proposition: ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Quantified statements

Statements about groups of objects

Existentially quantified statement

- CS-Upitt-graduate $(x) \land Honor-student(x)$
 - Translation: "x is a CS-Upitt-graduate and x is an honor student"
 - Proposition: no.
- $\exists x \text{ CS-Upitt-graduate } (x) \land \text{Honor-student}(x)$
 - Translation: "There is a person who is a CS-Upitt-graduate and who is also an honor student."
 - Proposition: yes.

Summary of quantified statements

• When $\forall x P(x)$ and $\exists x P(x)$ are true and false?

Statement	When true?	When false?
∀x P(x)	P(x) true for all x	There is an x where P(x) is false.
∃x P(x)	There is some x for which P(x) is true).	P(x) is false for all x.

Suppose the elements in the universe of discourse can be enumerated as x1, x2, ..., xN then:

- $\forall x \ P(x)$ is true whenever $P(x1) \land P(x2) \land ... \land P(xN)$ is true
- $\exists x \ P(x)$ is true whenever $P(x1) \lor P(x2) \lor ... \lor P(xN)$ is true.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Translation with quantifiers

Sentence:

- All Upitt students are smart.
- **Assume:** the domain of discourse of x are Upitt students
- Translation:
- ?

CS 441 Discrete mathematics for CS

Sentence:

- All Upitt students are smart.
- **Assume:** the domain of discourse of x are Upitt students
- Translation:
- $\forall x \, Smart(x)$
- **Assume:** the universe of discourse are students (all students):
- ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Translation with quantifiers

Sentence:

- All Upitt students are smart.
- **Assume:** the domain of discourse of x are Upitt students
- Translation:
- $\forall x \, Smart(x)$
- **Assume:** the universe of discourse are students (all students):
- $\forall x \text{ at}(x, \text{Upitt}) \rightarrow \text{Smart}(x)$
- Assume: the universe of discourse are people:
- ?

CS 441 Discrete mathematics for CS

Sentence:

- All Upitt students are smart.
- **Assume:** the domain of discourse of x are Upitt students
- Translation:
- $\forall x \, Smart(x)$
- **Assume:** the universe of discourse are students (all students):
- $\forall x \text{ at}(x, \text{Upitt}) \rightarrow \text{Smart}(x)$
- **Assume:** the universe of discourse are people:
- $\forall x \text{ student}(x) \land \text{at}(x, \text{Upitt}) \rightarrow \text{Smart}(x)$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Translation with quantifiers

Sentence:

- Someone at CMU is smart.
- Assume: the domain of discourse are all CMU affiliates
- Translation:
- 7

CS 441 Discrete mathematics for CS

Sentence:

- Someone at CMU is smart.
- Assume: the domain of discourse are all CMU affiliates
- Translation:
- $\exists x Smart(x)$
- Assume: the universe of discourse are people:
- ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Translation with quantifiers

Sentence:

- Someone at CMU is smart.
- Assume: the domain of discourse are all CMU affiliates
- Translation:
- $\exists x Smart(x)$
- Assume: the universe of discourse are people:
- $\exists x \text{ at}(x,CMU) \land Smart(x)$

CS 441 Discrete mathematics for CS

• Assume two predicates S(x) and P(x)

Universal statements typically tie with implications

- All S(x) is P(x)
 - $\forall x (S(x) \rightarrow P(x))$
- No S(x) is P(x)
 - $\forall x (S(x) \rightarrow \neg P(x))$

Existential statements typically tie with conjunction

- Some S(x) is P(x)
 - $-\exists x (S(x) \land P(x))$
- Some S(x) is not P(x)
 - $-\exists x (S(x) \land \neg P(x))$

CS 441 Discrete mathematics for CS