CS 441 Discrete Mathematics for CS Lecture 4

Predicate logic

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 441 Discrete mathematics for CS

M. Hauskrecht

Course administration

Homework 1

- Is due on Wednesday, January 25, 2006.
- Recitations for Homework 1:
 - Today, Wednesday, January 18, 2005
 - Monday, January 23, 2006

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs441/

CS 441 Discrete mathematics for CS

Limitations of the propositional logic

- Propositional logic: the world is described in terms of propositions
- A proposition is a statement that is either true or false.
- Limitations:
 - objects in elementary statements, their properties and relations are not explicitly represented in the propositional logic
- Example:
 - "John is a UPitt student."

 Objects and properties are hidden in the statement, it is not possible to reason about them

CS 441 Discrete mathematics for CS

M. Hauskrecht

Limitations of the propositional logic

- Statements for groups of objects
 - In propositional logic these must be exhaustively enumerated
- Example:
 - If John is a CS UPitt graduate then John has passed cs441

Translation:

- John is a CS UPitt graduate → John has passed cs441
 Similar statements can be written for other Upitt graduates:
- Ann is a CS Upitt graduate → Ann has passed cs441
- Ken is a CS Upitt graduate → Ken has passed cs441
- **...**
- What is a more natural solution to express the above knowledge?

CS 441 Discrete mathematics for CS

Limitations of the propositional logic

- Statements for groups of objects
 - In propositional logic these must be exhaustively enumerated
- Example:
 - If John is a CS UPitt graduate then John has passed cs441

Translation:

- John is a CS UPitt graduate → John has passed cs441
 Similar statements can be written for other Upitt graduates:
- Ann is a CS Upitt graduate → Ann has passed cs441
- Ken is a CS Upitt graduate → Ken has passed cs441
- **...**
- Solution: make statements with variables
 - If x is a CS Upitt graduate then x has passed cs441
 - -x is a CS UPitt graduate $\rightarrow x$ has passed cs441

CS 441 Discrete mathematics for CS

M. Hauskrecht

Predicate logic

Remedies the limitations of propositional logic

- Explicitly models objects and their properties
- Allows to make statements with variables and quantify them

Basic building blocks of the predicate logic:

- Constant –models a specific object
 - Examples: "John", "France", "7"
- Variable represents object of specific type (defined by the universe of discourse)

Examples: x, y

(universe of discourse can be people, students, numbers)

- **Predicate** over one, two or many variables or constants.
 - Represents properties or relations among objects

Examples: Red(car23), student(x), married(John,Ann)

CS 441 Discrete mathematics for CS

Predicates represent properties or relations among objects

A predicate P(x) assigns a value **true or false** to each x depending on whether the property holds or not for x.

• The assignment is best viewed as a big table with the variable x substituted for objects from the universe of discourse

Example:

- Assume **Student(x)** where the universe of discourse are people
- Student(John) T (if John is a student)
- Student(Ann) T (if Ann is indeed a student)
- Student(Jane) F (if Jane is not a student)
- ...

CS 441 Discrete mathematics for CS

M. Hauskrecht

Predicates

Assume a predicate P(x) that represents the statement:

• x is a prime number

Note: A positive integer is a prime if it is divisible only by 1 and itself

What are the truth values of:

• P(2) ?

CS 441 Discrete mathematics for CS

Assume a predicate P(x) that represents the statement:

• x is a prime number

What are the truth values of:

- P(2)
- P(3)

CS 441 Discrete mathematics for CS

M. Hauskrecht

Predicates

Assume a predicate P(x) that represents the statement:

Τ

• x is a prime number

What are the truth values of:

- P(2)
- P(3)
- P(4)

CS 441 Discrete mathematics for CS

Assume a predicate P(x) that represents the statement:

T

• x is a prime number

What are the truth values of:

- P(2)
- P(3) T
- P(4) F
- P(5)

CS 441 Discrete mathematics for CS

M. Hauskrecht

Predicates

Assume a predicate P(x) that represents the statement:

• x is a prime number

What are the truth values of:

- P(2)
- P(3) T
- P(4) F
- P(5)
- P(6)

CS 441 Discrete mathematics for CS

Assume a predicate P(x) that represents the statement:

T

• x is a prime number

What are the truth values of:

- P(2)
- P(3) T
- P(4) F
- P(5)
- P(6) F
- P(7)

CS 441 Discrete mathematics for CS

M. Hauskrecht

Predicates

Assume a predicate P(x) that represents the statement:

x is a prime number

What are the truth values of:

- P(2) T
- P(3) T
- P(4) F
- P(5) T
- P(6) F

• P(7)

CS 441 Discrete mathematics for CS

Assume a predicate P(x) that represents the statement:

• x is a prime number

What are the truth values of:

•	P(2)	T
_	D(2)	т

All statements P(2), P(3), P(4), P(5), P(6), P(7) are propositions

CS 441 Discrete mathematics for CS

M. Hauskrecht

Predicates

Assume a predicate P(x) that represents the statement:

x is a prime number

What are the truth values of:

T
,

• P(7)

Is P(x) a proposition?

CS 441 Discrete mathematics for CS

Assume a predicate P(x) that represents the statement:

• x is a prime number

What are the truth values of:

P(2)	T
P(3)	T
P(4)	F
P(5)	T
P(6)	F
P(7)	T
	P(3) P(4) P(5) P(6)

Is P(x) a proposition? No. Many possible substitutions are possible.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Predicates

Important:

• predicate P(x) is **not a proposition** since there are more objects it can be applied to

This is the same as in propositional logic ...

... But the difference is:

- propositional logic does not let us go inside the statements and manipulate x
- predicate logic allows us to explicitly manipulate and substitute objects

CS 441 Discrete mathematics for CS

Predicates can have more arguments which represent the relations between objects

Example:

- Older(John, Peter) denotes 'John is older than Peter'
 - this is a proposition because it is either true or false
- Older(x,y) 'x is older than y'
 - not a proposition, but after the substitution it becomes one

CS 441 Discrete mathematics for CS

M. Hauskrecht

Predicates

Predicates can have more arguments which represent the relations between objects

Example:

- Let Q(x,y) denote 'x+5 >y'
 - Is Q(x,y) a proposition?

CS 441 Discrete mathematics for CS

• Predicates can have **more arguments** which represent the **relations between objects**

Example:

- Let Q(x,y) denote 'x+5 >y'
 - Is Q(x,y) a proposition? No!
 - Is Q(3,7) a proposition?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Predicates

• Predicates can have **more arguments** which represent the **relations between objects**

Example:

- Let Q(x,y) denote 'x+5 >y'
 - Is Q(x,y) a proposition? No!
 - Is Q(3,7) a proposition? **Yes.** It is true.

CS 441 Discrete mathematics for CS

Predicates can have more arguments which represent the relations between objects

Example:

- Let Q(x,y) denote 'x+5 >y'
 - Is Q(x,y) a proposition? No!
 - Is Q(3,7) a proposition? Yes. Its truth value is true.
 - What is the truth value of:
 - -Q(1,6) ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Predicates

• Predicates can have **more arguments** which represent the **relations between objects**

Example:

- Let Q(x,y) denote 'x+5 >y'
 - Is Q(x,y) a proposition? No!
 - Is Q(3,7) a proposition? Yes. It is true.
 - What is the truth value of:
 - Q(1,6) F
 - Q(2,2) ?

CS 441 Discrete mathematics for CS

Predicates can have more arguments which represent the relations between objects

Example:

- Let Q(x,y) denote 'x+5 >y'
 - Is Q(x,y) a proposition? No!
 - Is Q(3,7) a proposition? Yes. It is true.
 - What is the truth value of:
 - -Q(1,6) F
 - Q(2,2) T

CS 441 Discrete mathematics for CS

M. Hauskrecht

Predicates

Predicates can have more arguments which represent the relations between objects

Example:

- Let Q(x,y) denote 'x+5 >y'
 - Is Q(x,y) a proposition? No!
 - Is Q(3,7) a proposition? Yes. It is true.
 - What is the truth value of
 - -Q(3,7) T
 - Q(1,6) F
 - Q(2,2) ?

CS 441 Discrete mathematics for CS

Predicates can have more arguments which represent the relations between objects

Example:

- Let Q(x,y) denote 'x+5 >y'
 - Is Q(x,y) a proposition? No!
 - Is Q(3,7) a proposition? Yes. It is true.
 - What is the truth value of
 - -Q(3,7) T
 - Q(1,6) F
 - Q(2,2) T

CS 441 Discrete mathematics for CS

M. Hauskrecht

Predicates

Predicates can have more arguments which represent the relations between objects

Example:

- Let Q(x,y) denote 'x+5 >y'
 - Is Q(x,y) a proposition? No!
 - Is Q(3,7) a proposition? Yes. It is true.
 - What is the truth value of
 - Q(3,7) T
 - -Q(1,6) F
 - Q(2,2) T
 - Is Q(3,y) a proposition?

CS 441 Discrete mathematics for CS

 Predicates can have more arguments which represent the relations between objects

Example:

- Let Q(x,y) denote 'x+5 >y'
 - Is Q(x,y) a proposition? No!
 - Is Q(3,7) a proposition? Yes. It is true.
 - What is the truth value of
 - Q(3,7) T
 - -Q(1,6) F
 - Q(2,2) T
 - Is Q(3,y) a proposition? No! We cannot say if it is true or false.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Quantified statements

Predicate logic allows us to make statements about groups of objects

• To do this we use special quantified expressions

Two types of quantified statements:

universal

Example: 'all CS Upitt graduates have to pass cs441"

- the statement is true for all graduates
- existential

Example: 'Some CS Upitt students graduate with honor.'

- the statement is true for some people

CS 441 Discrete mathematics for CS

<u>Defn</u>: The universal quantification of P(x) is the proposition "P(x) is true for all values of x in the universe of discourse." The notation $\forall x \ P(x)$ denotes the universal quantification of P(x), and is expressed as **for every x**, P(x).

Example:

- Let P(x) denote x > x 1.
- What is the truth value of $\forall x P(x)$?
- Assume the universe of discourse of x is all real numbers.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Universal quantifier

<u>Defn</u>: The universal quantification of P(x) is the proposition "P(x) is true for all values of x in the universe of discourse." The notation $\forall x \ P(x)$ denotes the universal quantification of P(x), and is expressed as **for every x**, P(x).

Example:

- Let P(x) denote x > x 1.
- What is the truth value of $\forall x P(x)$?
- Assume the universe of discourse of x is all real numbers.
- Answer: Since every number x is greater than itself minus 1. Therefore, $\forall x P(x)$ is true.

CS 441 Discrete mathematics for CS

<u>Defn</u>: The universal quantification of P(x) is the proposition "P(x) is true for all values of x in the universe of discourse." The notation $\forall x \ P(x)$ denotes the universal quantification of P(x), and is expressed as **for every** x, P(x).

Example 2:

- Let T(x) denote x > 5.
- What is the truth value of $\forall x T(x)$?
- Assume the universe of discourse of x are real numbers
- Answer: ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Universal quantifier

<u>Definition</u>: The universal quantification of P(x) is the proposition "P(x) is true for all values of x in the universe of discourse." The notation $\forall x \ P(x)$ denotes the universal quantification of P(x), and is expressed as **for every** x, P(x).

Example 2:

- Let T(x) denote x > 5.
- What is the truth value of $\forall x T(x)$?
- Assume the universe of discourse of x is all real numbers.
- Answer:
 - Since 3 > 5 is false. So, T(x) is not true for all values of x. Therefore, it is **false that** $\forall x T(x)$.

CS 441 Discrete mathematics for CS

<u>Quantification</u> converts a propositional function (e.g. P(x)) into a proposition by binding a variable to a set of values from the universe of discourse.

Example:

- Let P(x) denote x > x 1.
- Is P(x) a proposition?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Universal quantifier

Quantification converts a propositional function into **a proposition** by binding a variable to a set of values from the universe of discourse.

Example:

- Let P(x) denote x > x 1.
- Is P(x) a proposition? No. Many possible substitutions.
- Is $\forall x P(x)$ a proposition?

CS 441 Discrete mathematics for CS

Quantification converts a propositional function into a proposition by binding a variable to a set of values from the universe of discourse.

Example:

- Let P(x) denote x > x 1.
- Is P(x) a proposition? No. Many possible substitutions.
- Is $\forall x P(x)$ a proposition? Yes. True if for all x from the universe of discourse P(x) is true.
- Is $\forall x \ Q(x,y)$ a proposition?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Universal quantifier

Quantification converts a propositional function into **a proposition** by binding a variable to a set of values from the universe of discourse.

Example:

- Let P(x) denote x > x 1.
- Is P(x) a proposition? No. Many possible substitutions.
- Is $\forall x P(x)$ a proposition? Yes. True if for all x from the universe of discourse P(x) is true. Which holds?
- Is $\forall x \ Q(x,y)$ a proposition? No. The variable y is free and can be substituted by many objects.

CS 441 Discrete mathematics for CS

Existential quantifier

Definition: The **existential quantification** of P(x) is the proposition "There exists an element in the universe of discourse such that P(x) is true." The notation $\exists x \ P(x)$ denotes the existential quantification of P(x), and is expressed as **there is an** x such that P(x) is true.

Example 1:

- Let T(x) denote x > 5 and x is from real numbers
- What is the truth value of $\exists x T(x)$?
- Answer: ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Existential quantifier

Definition: The **existential quantification** of P(x) is the proposition "There exists an element in the universe of discourse such that P(x) is true." The notation $\exists x \ P(x)$ denotes the existential quantification of P(x), and is expressed as **there is an** x such that P(x) is true.

Example 1:

- Let T(x) denote x > 5 and x is from Real numbers.
- What is the truth value of $\exists x T(x)$?
- Answer:
- Since 10 > 5 is true. Therefore, it is **true that** $\exists x T(x)$.

CS 441 Discrete mathematics for CS

Existential quantifier

Definition: The **existential quantification** of P(x) is the proposition "There exists an element in the universe of discourse such that P(x) is true." The notation $\exists x \ P(x)$ denotes the existential quantification of P(x), and is expressed as **there is an** x such that P(x) is true.

Example 2:

- Let Q(x) denote x = x + 2 where x is real numbers
- What is the truth value of $\exists x \ Q(x)$?
- Answer: ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Existential quantifier

Definition: The **existential quantification** of P(x) is the proposition "There exists an element in the universe of discourse such that P(x) is true." The notation $\exists x \ P(x)$ denotes the existential quantification of P(x), and is expressed as **there is an** x such that P(x) is true.

Example 2:

- Let Q(x) denote x = x + 2 where x is real numbers
- What is the truth value of $\exists x \ Q(x)$?
- Answer: Since no real number is 2 larger than itself, the truth value of $\exists x \ Q(x)$ is false.

CS 441 Discrete mathematics for CS