CS 441 Discrete Mathematics for CS Lecture 35

Relations

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 441 Discrete mathematics for CS

M. Hauskrecht

Course administration

- Homework assignment 11
 - due on Friday, April 21, 2006
- Final exam
 - Thursday, April 27, 2006
 - At 12:00-1:50pm
 - The same room as lectures

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs441/

CS 441 Discrete mathematics for CS

Cartesian product (review)

- Let $A = \{a_1, a_2, ...a_k\}$ and $B = \{b_1, b_2, ...b_m\}$.
- The Cartesian product A x B is defined by a set of pairs $\{(a_1, b_1), (a_1, b_2), \dots (a_1, b_m), \dots, (a_k, b_m)\}.$

Example:

Let $A = \{a,b,c\}$ and $B = \{1 \ 2 \ 3\}$. What is AxB?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Cartesian product (review)

- Let $A=\{a_1, a_2, ...a_k\}$ and $B=\{b_1, b_2, ...b_m\}$.
- The Cartesian product A x B is defined by a set of pairs $\{(a_1, b_1), (a_1, b_2), \dots (a_1, b_m), \dots, (a_k, b_m)\}.$

Example:

Let $A=\{a,b,c\}$ and $B=\{1\ 2\ 3\}$. What is AxB? AxB = $\{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$

CS 441 Discrete mathematics for CS

Binary relation

<u>Definition:</u> Let A and B be sets. A **binary relation from A to B** is a **subset of a Cartesian product A x B**.

Example: Let $A = \{a,b,c\}$ and $B = \{1,2,3\}$.

• $R=\{(a,1),(b,2),(c,2)\}$ is an example of a relation from A to B.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Binary relation

<u>Definition:</u> Let A and B be sets. A **binary relation from A to B** is a **subset of a Cartesian product A x B**.

Example: Let $A = \{a,b,c\}$ and $B = \{1,2,3\}$.

- $R=\{(a,1),(b,2),(c,2)\}$ is an example of a relation from A to B.
- Another example of a relation from A to B?

CS 441 Discrete mathematics for CS

Representing binary relations

- We can graphically represent a binary relation R as follows:
 - if **a R b** then draw an arrow from a to b.

$$a \rightarrow b$$

Example:

- Let $A = \{0, 1, 2\}, B = \{u,v\} \text{ and } R = \{(0,u), (0,v), (1,v), (2,u)\}$
- Note: $R \subseteq A \times B$.
- Graph:

CS 441 Discrete mathematics for CS

M. Hauskrecht

Representing binary relations

• We can represent a binary relation R by a **table** showing (marking) the ordered pairs of R.

Example:

- Let $A = \{0, 1, 2\}$, $B = \{u,v\}$ and $R = \{(0,u), (0,v), (1,v), (2,u)\}$
- Table:

R	u	V	or	D 1		
				<u> </u>	u	V
0	X	X		0	1	1
1		X		1	0	1
2	X			2	1	0

CS 441 Discrete mathematics for CS

Relations and functions

- Relations represent **one to many relationships** between elements in A and B.
- Example:

• What is the difference between a **relation and a function from A to B**? A function on sets A,B A → B assigns to each element in the domain set A exactly one element from B. So it is a **special relation.**

CS 441 Discrete mathematics for CS

M. Hauskrecht

Relation on the set

<u>Definition:</u> A relation on the set A is a relation from A to itself.

Example 1:

- Let $A = \{1,2,3,4\}$ and
- R_{fiin} on $A = \{1,2,3,4\}$ is defined as:

•
$$R_{fun} = \{(1,2),(2,2),(3,3)\}.$$

Relation on the set

<u>Definition:</u> A relation on the set A is a relation from A to itself.

Example 1:

- Let $A = \{1,2,3,4\}$ and $R_{div} = \{(a,b)| a \text{ divides } b\}$
- What does R_{div} consist of?
- $R_{div} = \{ \dots \}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Relation on the set

<u>Definition:</u> A relation on the set A is a relation from A to itself.

Example 1:

- Let $A = \{1,2,3,4\}$ and $R_{div} = \{(a,b)| a \text{ divides } b\}$
- What does R_{div} consist of?
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$

CS 441 Discrete mathematics for CS

Relation on the set

Example 2:

- Let $A = \{1,2,3,4\}$.
- Define a R_{\neq} b if and only if $a \neq b$.

 $\mathbf{R}_{\neq} = \{ \dots$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Relation on the set

Example 2:

- Let $A = \{1,2,3,4\}$.
- Define a R_{\neq} b if and only if $a \neq b$.

 $R_{\neq} = \{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\}$

CS 441 Discrete mathematics for CS

Relation on the set

Definition: A relation on the set A is a relation from A to itself.

Example 3:

- Let $A = \{1,2,3,4\}$ and
- R_{fun} on $A = \{1,2,3,4\}$ is defined as:
 - $R_{\text{fun}} = \{(1,2),(2,2),(3,3)\}.$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Properties of relations

<u>Definition</u> (reflexive relation): A relation R on a set A is called reflexive if $(a,a) \in R$ for every element $a \in A$.

Example 1:

- Assume relation $R_{div} = \{(a b), if a | b\}$ on $A = \{1,2,3,4\}$
- Is R_{div} reflexive?
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- Answer: ?

CS 441 Discrete mathematics for CS

<u>Definition</u> (reflexive relation): A relation R on a set A is called reflexive if $(a,a) \in R$ for every element $a \in A$.

Example 1:

- Assume relation $R_{div} = \{(a b), if a | b\}$ on $A = \{1,2,3,4\}$
- Is R_{div} reflexive?
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- Answer: Yes. (1,1), (2,2), (3,3), and $(4,4) \in A$.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Reflexive relation

Reflexive relation

- $R_{div} = \{(a b), if a | b\}$ on $A = \{1,2,3,4\}$
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$

• A relation R is reflexive if and only if MR has 1 in every position on its main diagonal.

CS 441 Discrete mathematics for CS

<u>Definition</u> (reflexive relation): A relation R on a set A is called reflexive if $(a,a) \in R$ for every element $a \in A$.

Example 2:

- Relation R_{fun} on $A = \{1,2,3,4\}$ defined as:
 - $R_{\text{fun}} = \{(1,2),(2,2),(3,3)\}.$
- Is R_{fun} reflexive?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Properties of relations

<u>Definition</u> (reflexive relation): A relation R on a set A is called reflexive if $(a,a) \in R$ for every element $a \in A$.

Example 2:

- Relation R_{fun} on $A = \{1,2,3,4\}$ defined as:
 - $R_{\text{fun}} = \{(1,2),(2,2),(3,3)\}.$
- Is R_{fun} reflexive?
- No. It is not reflexive since $(1,1) \notin R_{\text{fun}}$.

CS 441 Discrete mathematics for CS

<u>Definition</u> (irreflexive relation): A relation R on a set A is called irreflexive if $(a,a) \notin R$ for every $a \in A$.

Example 1:

- Assume relation R_≠ on A={1,2,3,4}, such that a R_≠ b if and only if a ≠ b.
- Is R_≠ irreflexive?
- $R_{\neq} = \{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\}$
- Answer:

CS 441 Discrete mathematics for CS

M. Hauskrecht

Properties of relations

<u>Definition</u> (irreflexive relation): A relation R on a set A is called irreflexive if $(a,a) \notin R$ for every $a \in A$.

Example 1:

- Assume relation R_{\neq} on A={1,2,3,4}, such that $\mathbf{a} \ \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathbf{a} \neq \mathbf{b}$.
- Is R_{\neq} irreflexive?
- R_{\neq} ={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}
- **Answer:** Yes. Because (1,1),(2,2),(3,3) and $(4,4) \not\in R_{\neq}$

CS 441 Discrete mathematics for CS

Irreflexive relation

Irreflexive relation

- R_{\neq} on A={1,2,3,4}, such that $\mathbf{a} \ \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathbf{a} \neq \mathbf{b}$.
- R_{\neq} ={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}

• A relation R is irreflexive if and only if MR has 0 in every position on its main diagonal.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Properties of relations

<u>Definition</u> (irreflexive relation): A relation R on a set A is called irreflexive if $(a,a) \notin R$ for every $a \in A$.

Example 2:

- R_{fun} on $A = \{1,2,3,4\}$ defined as:
 - $R_{\text{fun}} = \{(1,2),(2,2),(3,3)\}.$
- Is R_{fun} irreflexive?
- Answer:

CS 441 Discrete mathematics for CS

<u>Definition</u> (irreflexive relation): A relation R on a set A is called irreflexive if $(a,a) \notin R$ for every $a \in A$.

Example 2:

- R_{fun} on A = {1,2,3,4} defined as:
 - $R_{\text{fun}} = \{(1,2),(2,2),(3,3)\}.$
- Is R_{fun} irreflexive?
- Answer: No. Because (2,2) and (3,3) $\in R_{fun}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Properties of relations

<u>Definition</u> (symmetric relation): A relation R on a set A is called symmetric if

$$\forall \ a,b \in A \ (a,b) \in R \to (b,a) \in R.$$

Example 1:

- $R_{div} = \{(a b), if a | b\}$ on $A = \{1,2,3,4\}$
- Is R_{div} symmetric?
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- Answer:

CS 441 Discrete mathematics for CS

<u>Definition</u> (symmetric relation): A relation R on a set A is called symmetric if

$$\forall a, b \in A \ (a,b) \in R \rightarrow (b,a) \in R.$$

Example 1:

- $R_{div} = \{(a b), if a | b\} \text{ on } A = \{1,2,3,4\}$
- Is R_{div} symmetric?
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- Answer: No. It is not symmetric since $(1,2) \in R$ but $(2,1) \notin R$.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Properties of relations

<u>Definition</u> (symmetric relation): A relation R on a set A is called symmetric if

$$\forall \ a,b \in A \ (a,b) \in R \to (b,a) \in R.$$

Example 2:

- \mathbf{R}_{\neq} on A={1,2,3,4}, such that $\mathbf{a} \ \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathbf{a} \neq \mathbf{b}$.
- Is R_≠ symmetric ?
- R_{\neq} ={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}
- Answer:

CS 441 Discrete mathematics for CS

<u>Definition</u> (symmetric relation): A relation R on a set A is called symmetric if

$$\forall a, b \in A \ (a,b) \in R \rightarrow (b,a) \in R.$$

Example 2:

- R_{\neq} on A={1,2,3,4}, such that $\mathbf{a} \ \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathbf{a} \neq \mathbf{b}$.
- Is R_≠ symmetric?
- R_{\neq} ={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}
- Answer: Yes. If $(a,b) \in R_{\neq} \rightarrow (b,a) \in R_{\neq}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Symmetric relation

Symmetric relation:

- R_{\neq} on A={1,2,3,4}, such that $\mathbf{a} \ \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathbf{a} \neq \mathbf{b}$.
- R_{\neq} ={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}

A relation R is symmetric if and only if m_{ij} = m_{ji} for all i,j.

CS 441 Discrete mathematics for CS

- <u>Definition (antisymmetric relation)</u>: A relation on a set A is called **antisymmetric** if
 - $[(a,b) \in R \text{ and } (b,a) \in R] \rightarrow a = b \text{ where } a,b \in A.$

Example 1:

- Relation R_{fun} on $A = \{1,2,3,4\}$ defined as:
 - $R_{\text{fun}} = \{(1,2),(2,2),(3,3)\}.$
- Is R_{fun} antisymmetric?
- Answer:

CS 441 Discrete mathematics for CS

M. Hauskrecht

Properties of relations

- <u>Definition (antisymmetric relation)</u>: A relation on a set A is called **antisymmetric** if
 - $[(a,b) \in R \text{ and } (b,a) \in R] \rightarrow a = b \text{ where } a,b \in A.$

Example 1:

- Relation R_{fun} on $A = \{1,2,3,4\}$ defined as:
 - $R_{\text{fun}} = \{(1,2),(2,2),(3,3)\}.$
- Is R_{fun} antisymmetric?
- Answer: Yes. It is antisymmetric

CS 441 Discrete mathematics for CS

Antisymmetric relations

Antisymmetric relation

• relation $R_{\text{fun}} = \{(1,2),(2,2),(3,3)\}$

$$\label{eq:mr_fun} MR_{fun} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

• A relation is **antisymmetric** if and only if $m_{ij} = 1 \rightarrow m_{ij} = 0$ for $i \neq j$.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Properties of relations

<u>Definition</u> (antisymmetric relation): A relation on a set A is called antisymmetric if

• $[(a,b) \in R \text{ and } (b,a) \in R] \rightarrow a = b \text{ where } a,b \in A.$

Example 2:

- R_{\neq} on A={1,2,3,4}, such that $\mathbf{a} \ \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathbf{a} \neq \mathbf{b}$.
- Is R_≠ antisymmetric?
- R_{\neq} ={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}
- Answer:

CS 441 Discrete mathematics for CS

<u>Definition</u> (antisymmetric relation): A relation on a set A is called antisymmetric if

• $[(a,b) \in R \text{ and } (b,a) \in R] \rightarrow a = b \text{ where } a,b \in A.$

Example 2:

- R_{\neq} on A={1,2,3,4}, such that $\mathbf{a} \ \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathbf{a} \neq \mathbf{b}$.
- Is R_{\pm} antisymmetric?
- R_{\neq} ={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}
- Answer: No. It is not antisymmetric since $(1,2) \in R$ and $(2,1) \in R$ but $1 \neq 2$.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Properties of relations

Definition (transitive relation): A relation R on a set A is called **transitive** if

- $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R \text{ for all } a,b,c \in A.$
- Example 1:
- $R_{div} = \{(a b), if a | b\}$ on $A = \{1,2,3,4\}$
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- Is R_{div} transitive?
- Answer:

CS 441 Discrete mathematics for CS

Definition (transitive relation): A relation R on a set A is called **transitive** if

- $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R \text{ for all } a,b,c \in A.$
- Example 1:
- $R_{div} = \{(a b), if a | b\} \text{ on } A = \{1,2,3,4\}$
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- Is R_{div} transitive?
- Answer: Yes.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Properties of relations

Definition (transitive relation): A relation R on a set A is called **transitive** if

- $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R \text{ for all } a,b,c \in A.$
- Example 2:
- R_{\neq} on A={1,2,3,4}, such that $\mathbf{a} \ \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathbf{a} \neq \mathbf{b}$.
- $R_{\neq} = \{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\}$
- Is R_{\neq} transitive?
- Answer:

CS 441 Discrete mathematics for CS

Definition (transitive relation): A relation R on a set A is called **transitive** if

- $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R \text{ for all } a,b,c \in A.$
- Example 2:
- R_{\neq} on A={1,2,3,4}, such that $\mathbf{a} \ \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathbf{a} \neq \mathbf{b}$.
- $R_{\perp} = \{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\}$
- Is R_{\neq} transitive?
- Answer: No. It is not transitive since $(1,2) \in R$ and $(2,1) \in R$ but (1,1) is not an element of R.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Properties of relations

Definition (transitive relation): A relation R on a set A is called **transitive** if

- $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R \text{ for all } a,b,c \in A.$
- Example 3:
- Relation R_{fun} on $A = \{1,2,3,4\}$ defined as:
 - $R_{\text{fun}} = \{(1,2),(2,2),(3,3)\}.$
- Is R_{fun} transitive?
- Answer:

CS 441 Discrete mathematics for CS

Definition (transitive relation): A relation R on a set A is called **transitive** if

- $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R \text{ for all } a,b,c \in A.$
- Example 3:
- Relation R_{fun} on $A = \{1,2,3,4\}$ defined as:
 - $R_{\text{fun}} = \{(1,2),(2,2),(3,3)\}.$
- Is R_{fun} transitive?
- Answer: Yes. It is transitive.

CS 441 Discrete mathematics for CS