CS 441 Discrete Mathematics for CS Lecture 34

Relations

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 441 Discrete mathematics for CS

M. Hauskrecht

Course administration

- Homework assignment 11
 - due on Friday, April 21, 2006
- Final exam
 - Thursday, April 27, 2006
 - At 12:00-1:50pm
 - The same room as lectures

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs441/

CS 441 Discrete mathematics for CS

Cartesian product (review)

- Let $A = \{a_1, a_2, ...a_k\}$ and $B = \{b_1, b_2, ...b_m\}$.
- The Cartesian product A x B is defined by a set of pairs {(a₁ b₁), (a₁, b₂), ... (a₁, b_m), ..., (a_k,b_m)}.

Example:

Let $A = \{a,b,c\}$ and $B = \{1 \ 2 \ 3\}$. What is AxB?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Cartesian product (review)

- Let $A=\{a_1, a_2, ...a_k\}$ and $B=\{b_1, b_2, ...b_m\}$.
- The Cartesian product A x B is defined by a set of pairs {(a₁ b₁), (a₁, b₂), ... (a₁, b_m), ..., (a_k,b_m)}.

Example:

Let $A=\{a,b,c\}$ and $B=\{1\ 2\ 3\}$. What is AxB? AxB = $\{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$

CS 441 Discrete mathematics for CS

Binary relation

<u>Definition:</u> Let A and B be sets. A **binary relation from A to B** is a **subset of a Cartesian product A x B**.

- Let $R \subseteq A \times B$ means R is a set of ordered pairs of the form (a,b) where $a \in A$ and $b \in B$.
- We use the notation a R b to denote (a,b) ∈ R and a k b to denote (a,b) ∉ R. If a R b, we say a is related to b by R.

Example: Let $A = \{a,b,c\}$ and $B = \{1,2,3\}$.

• Is $R = \{(a,1),(b,2),(c,2)\}$ a relation from A to B?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Binary relation

<u>Definition:</u> Let A and B be sets. A **binary relation from A to B** is a **subset of a Cartesian product A x B**.

- Let $R \subseteq A \times B$ means R is a set of ordered pairs of the form (a,b) where $a \in A$ and $b \in B$.
- We use the notation a R b to denote (a,b) ∈ R and a k b to denote (a,b) ∉ R. If a R b, we say a is related to b by R.

Example: Let $A = \{a,b,c\}$ and $B = \{1,2,3\}$.

- Is $R = \{(a,1),(b,2),(c,2)\}$ a relation from A to B? Yes.
- Is $Q=\{(1,a),(2,b)\}$ a relation from A to B?

CS 441 Discrete mathematics for CS

Binary relation

<u>Definition:</u> Let A and B be sets. A **binary relation from A to B** is a subset of a Cartesian product A x B.

- Let $R \subseteq A \times B$ means R is a set of ordered pairs of the form (a,b) where $a \in A$ and $b \in B$.
- We use the notation a R b to denote (a,b) ∈ R and a k b to denote (a,b) ∉ R. If a R b, we say a is related to b by R.

Example: Let $A = \{a,b,c\}$ and $B = \{1,2,3\}$.

- Is $R = \{(a,1),(b,2),(c,2)\}\$ a relation from A to B? Yes.
- Is $Q = \{(1,a),(2,b)\}$ a relation from A to B? **No.**
- Is $P=\{(a,a),(b,c),(b,a)\}$ a relation from A to A?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Binary relation

<u>Definition:</u> Let A and B be sets. A **binary relation from A to B** is a subset of a Cartesian product A x B.

- Let $R \subseteq A \times B$ means R is a set of ordered pairs of the form (a,b) where $a \in A$ and $b \in B$.
- We use the notation a R b to denote (a,b) ∈ R and a k b to denote (a,b) ∉ R. If a R b, we say a is related to b by R.

Example: Let $A = \{a,b,c\}$ and $B = \{1,2,3\}$.

- Is $R=\{(a,1),(b,2),(c,2)\}$ a relation from A to B? Yes.
- Is $Q=\{(1,a),(2,b)\}$ a relation from A to B? **No.**
- Is $P=\{(a,a),(b,c),(b,a)\}$ a relation from A to A? Yes

CS 441 Discrete mathematics for CS

Representing binary relations

- We can graphically represent a binary relation R as follows:
 - if **a R b** then draw an arrow from a to b.

$$a \rightarrow b$$

Example:

- Let $A = \{0, 1, 2\}, B = \{u,v\} \text{ and } R = \{(0,u), (0,v), (1,v), (2,u)\}$
- Note: $R \subseteq A \times B$.
- Graph:

CS 441 Discrete mathematics for CS

M. Hauskrecht

Representing binary relations

• We can represent a binary relation R by a **table** showing (marking) the ordered pairs of R.

Example:

- Let $A = \{0, 1, 2\}$, $B = \{u,v\}$ and $R = \{(0,u), (0,v), (1,v), (2,u)\}$
- Table:

R	u	V	or	D 1		
				<u> </u>	u	V
0	X	X		0	1	1
1		X		1	0	1
2	X			2	1	0

CS 441 Discrete mathematics for CS

Relations and functions

- Relations represent **one to many relationships** between elements in A and B.
- Example:

 What is the difference between a relation and a function from A to B?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Relations and functions

- Relations represent **one to many relationships** between elements in A and B.
- Example:

• What is the difference between a **relation and a function from A to B**? A function on sets A,B A → B assigns to each element in the domain set A exactly one element from B. So it is a **special relation.**

CS 441 Discrete mathematics for CS

Relation on the set

<u>Definition:</u> A relation on the set A is a relation from A to itself.

Example 1:

- Let $A = \{1,2,3,4\}$ and $R_{div} = \{(a,b)| a \text{ divides } b\}$
- What does R_{div} consist of?
- $R_{div} = \{ \dots \}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Relation on the set

<u>Definition:</u> A relation on the set A is a relation from A to itself.

Example 1:

- Let $A = \{1,2,3,4\}$ and $R_{div} = \{(a,b)| a \text{ divides } b\}$
- What does R_{div} consist of?
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$

CS 441 Discrete mathematics for CS

Relation on the set

Example:

- Let $A = \{1,2,3,4\}$.
- Define a R_{\neq} b if and only if $a \neq b$.

 $\mathbf{R}_{\neq} = \{ \dots$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Relation on the set

Example:

- Let $A = \{1,2,3,4\}$.
- Define a R_{\neq} b if and only if $a \neq b$.

 $R_{\neq} = \{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\}$

CS 441 Discrete mathematics for CS

Binary relations

• Theorem: The number of binary relations on a set A, where |A| = n is:

 2^{n^2}

- Proof:
- If |A| = n then the cardinality of the Cartesian product $|A \times A| = n^2$.
- R is a binary relation on A if R ⊆ A x A (that is, R is a subset of A x A).
- The number of subsets of A x A is : $2^{|AxA|} = 2^{n^2}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Binary relations

- **Example**: Let $A = \{1,2\}$
- What is A x A = $\{(1,1),(1,2),(2,1),(2,2)\}$
- List of possible relations (subsets of A x A):

• {(1,1),(1,2),(2,1),(2,2)}

.... 1

• Use formula: $2^4 = 16$

CS 441 Discrete mathematics for CS