CS 441 Discrete Mathematics for CS Lecture 32

Probabilities

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 441 Discrete mathematics for CS

M. Hauskrecht

Course administration

- Homework assignment 10 is out
 - due on Friday, April 14, 2006
- Final exam (confirmation is still pending)
 - Thursday, April 27, 2006
 - At 12:00-1:50pm
 - The same room as lectures

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs441/

CS 441 Discrete mathematics for CS

Definition: Let E and F be two events such that P(F) > 0. The **conditional probability** of E given F

- P(E|F) = P(E and F) / P(F)
- Example:
- What is the probability that a roll of a fair dice is 6 given that we know it is >3.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Conditional probability

Definition: Let E and F be two events such that P(F) > 0. The **conditional probability** of E given F

- P(E|F) = P(E and F) / P(F)
- Example:
- What is the probability that a roll of a fair dice is 6 given that we know it is >3.
- P(outcome=6) =?

CS 441 Discrete mathematics for CS

Definition: Let E and F be two events such that P(F) > 0. The **conditional probability** of E given F

- P(E|F) = P(E and F) / P(F)
- Example:
- What is the probability that a roll of a fair dice is 6 given that we know it is >3.
- P(outcome=6) = 1/6
- P(outcome=6 and outcome > 3) = ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Conditional probability

Definition: Let E and F be two events such that P(F) > 0. The **conditional probability** of E given F

- P(E|F) = P(E and F) / P(F)
- Example:
- What is the probability that a roll of a fair dice is 6 given that we know it is >3.
- P(outcome=6) = 1/6
- P(outcome=6 and outcome > 3) = 1/6
- P(outcome>3) = ?

CS 441 Discrete mathematics for CS

Definition: Let E and F be two events such that P(F) > 0. The **conditional probability** of E given F

- P(E|F) = P(E and F) / P(F)
- Example:
- What is the probability that a roll of a fair dice is 6 given that we know it is >3.
- P(outcome=6) = 1/6
- P(outcome=6 and outcome > 3) = 1/6
- P(outcome>3) = 1/2
- P(outcome = 6 | outcome > 3) = ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Conditional probability

Definition: Let E and F be two events such that P(F) > 0. The **conditional probability** of E given F

- P(E|F) = P(E and F) / P(F)
- Example:
- What is the probability that a roll of a fair dice is 6 given that we know it is >3.
- P(outcome=6) = 1/6
- P(outcome=6 and outcome > 3) = 1/6
- P(outcome>3) = 1/2
- P(outcome =6 |outcome >3) = 1/3

CS 441 Discrete mathematics for CS

Definition: Let E and F be two events such that P(F) > 0. The **conditional probability** of E given F

- P(E|F) = P(E and F) / P(F)
- Example:
- What is the probability that a roll of a fair dice is 6 given that we know it is >3.
- P(outcome=6) = 1/6
- P(outcome=6 and outcome > 3) = 1/6
- P(outcome>3) = 1/2
- P(outcome = 6 | outcome > 3) = 1/3

CS 441 Discrete mathematics for CS

M. Hauskrecht

Independence

Definition: The events E and F are said to be **independent** if:

• P(E and F) = P(E) * P(F)

CS 441 Discrete mathematics for CS

Random variable

Sample space: a set of all outcomes of the experiment

• Example: roll of two dices

$$\{(1,1),(1,2),(1,3),\dots(1,6),(2,1),\dots(6,5),(6,6)\}$$

Definition: A random variable X is a function from the sample space S of an experiment to the set of real numbers $X: S \rightarrow R$. A random variable assigns a number to each possible outcome.

• **Example:** a random variable that describes the sum of two dices

$$(1,1) \rightarrow 2, (1,2) \rightarrow 3, (2,1) \rightarrow 3, \dots (6,5) \rightarrow 11, (6,6) \rightarrow 12$$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Probability distribution

The distribution of a random variable X on the sample space S is a set of pairs (r p(X=r)) for all r in S where r is the number and p(X=r) is the probability that X takes a value r.

Example: the random variable is the sum of two dices

$$(1,1) \rightarrow 2, (1,2) \rightarrow 3, (2,1) \rightarrow 3, \dots (6,5) \rightarrow 11, (6,6) \rightarrow 12$$

Distribution of the random variable:

- (2 ?)
- (3 ?)
- (7 ?)

• • •

(12 ?)

CS 441 Discrete mathematics for CS

Probability distribution

The distribution of a random variable X on the sample space S is a set of pairs (r p(X=r)) for all r in S where r is the number and p(X=r) is the probability that X takes a value r.

Example: the random variable is the sum of two dices

$$(1,1) \rightarrow 2, (1,2) \rightarrow 3, (2,1) \rightarrow 3, \dots (6,5) \rightarrow 11, (6,6) \rightarrow 12$$

Distribution of the random variable:

- (2 1/36)
- (3 ?)
- (7 ?)
- ...
- (12 ?)

CS 441 Discrete mathematics for CS

M. Hauskrecht

Probability distribution

The distribution of a random variable X on the sample space S is a set of pairs (r p(X=r)) for all r in S where r is the number and p(X=r) is the probability that X takes a value r.

Example: the random variable is the sum of two dices

$$(1,1) \rightarrow 2, (1,2) \rightarrow 3, (2,1) \rightarrow 3, \dots (6,5) \rightarrow 11, (6,6) \rightarrow 12$$

Distribution of the random variable:

- (2 1/36)
- $(3 \ 2/36)$
- (7 ?)
- ...
- (12 ?)

CS 441 Discrete mathematics for CS

Probability distribution

The distribution of a random variable X on the sample space S is a set of pairs (r p(X=r)) for all r in S where r is the number and p(X=r) is the probability that X takes a value r.

Example: the random variable X is the sum of two dices

$$(1,1) \rightarrow 2, (1,2) \rightarrow 3, (2,1) \rightarrow 3, \dots (6,5) \rightarrow 11, (6,6) \rightarrow 12$$

Distribution of the random variable:

- (2 1/36)
- $(3 \ 2/36)$
- (7 1/6)

...

(12 ?)

CS 441 Discrete mathematics for CS

M. Hauskrecht

Probability distribution

The distribution of a random variable X on the sample space S is a set of pairs (r p(X=r)) for all r in S where r is the number and p(X=r) is the probability that X takes a value r.

Example: the random variable is the sum of two dices

$$(1,1) \rightarrow 2, (1,2) \rightarrow 3, (2,1) \rightarrow 3, \dots (6,5) \rightarrow 11, (6,6) \rightarrow 12$$

Distribution of the random variable:

- (2 1/36)
- $(3 \ 2/36)$
- $(7 \ 1/6)$

••

 $(12 \ 1/36)$

CS 441 Discrete mathematics for CS

Bernoulli distribution

- Coin flip
- P(head) =0.6 and the probability of a tail is 0.4. Assume 5 coin flips such that each coin flip is **independent** of the previous one
- What is the probability of seeing:
 - HHHHH 5 heads in a row
- **P**(HHHHH) = ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Probabilities

- · Repeated coin flip
- P(head) =0.6 and the probability of a tail is 0.4. Each coin flip is **independent** of the previous one
- What is the probability of seeing:
 - HHHHH 5 heads in a row
- $P(HHHHHH) = 0.6^5 =$
 - Assume the outcome is HHTTT
- **P(HHTTT)=?**

CS 441 Discrete mathematics for CS

- Repeated coin flip
- P(head) =0.6 and the probability of a tail is 0.4. Each coin flip is **independent** of the previous one
- What is the probability of seeing:
 - HHHHH 5 heads in a row
- $P(HHHHHH) = 0.6^5 =$
 - Assume the outcome is HHTTT
- $P(HHTTT) = 0.6*0.6*0.4^{3} = 0.6^{2}*0.4^{3}$
 - Assume the outcome is TTHHT
- **P(TTHHT)=?**

CS 441 Discrete mathematics for CS

M. Hauskrecht

Probabilities

- Repeated coin flip
- P(head) =0.6 and the probability of a tail is 0.4. Each coin flip is **independent** of the previous one
- What is the probability of seeing:
 - HHHHH 5 heads in a row
- $P(HHHHHH) = 0.6^5 =$
 - Assume the outcome is HHTTT
- $P(HHTTT) = 0.6*0.6*0.4^{3} = 0.6^{2}*0.4^{3}$
 - Assume the outcome is TTHHT
- $P(TTHHT)=0.42*0.62*0.4=0.62*0.4^3$

- Repeated coin flip
- P(head) =0.6 and the probability of a tail is 0.4. Each coin flip is **independent** of the previous one
- What is the probability of seeing:
 - HHHHH 5 heads in a row
- $P(HHHHHH) = 0.6^5 =$
 - Assume the outcome is HHTTT
- P(HHTTT)= $0.6*0.6*0.4^{3}=0.6^{2}*0.4^{3}$
 - Assume the outcome is TTHHT
- $P(TTHHT)=0.4^{2}*0.6^{2}*0.4=0.6^{2}*0.4^{3}$
- What is the probability of seeing three tails and two heads?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Probabilities

- Repeated coin flip
- P(head) =0.6 and the probability of a tail is 0.4. Each coin flip is **independent** of the previous one
- What is the probability of seeing:
 - HHHHH 5 heads in a row
- $P(HHHHHH) = 0.6^5 =$
 - Assume the outcome is HHTTT
- $P(HHTTT) = 0.6*0.6*0.4^{3} = 0.6^{2}*0.4^{3}$
 - Assume the outcome is TTHHT
- $P(TTHHT)=0.4^{2}*0.6^{2}*0.4=0.6^{2}*0.4^{3}$
- What is the probability of seeing three tails and two heads?
- The number of two-head-three tail combinations?

- Repeated coin flip
- P(head) =0.6 and the probability of a tail is 0.4. Each coin flip is **independent** of the previous one
- What is the probability of seeing:
 - HHHHH 5 heads in a row
- $P(HHHHHH) = 0.6^5 =$
 - Assume the outcome is HHTTT
- $P(HHTTT) = 0.6*0.6*0.4^{3} = 0.6^{2}*0.4^{3}$
 - Assume the outcome is TTHHT
- $P(TTHHT)=0.4^{2*}0.6^{2*}0.4=0.6^{2*}0.4^{3}$
- What is the probability of seeing three tails and two heads?
- The number of two-head-three tail combinations = C(2,5)
- P(two-heads-three tails) = $C(2.5) *0.6^2 *0.4^3$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Probabilities

- Repeated coin flip problem
- Assume the random variable is the count of occurrences of heads in 5 coin flips. For example:
- TTTTT yields outcome 0
- HTTTT or TTHTT yields 1
- HTHHT yields 3 ...
- What is the probability of an outcome 0?
- $P(outcome=0) = 0.6^{\circ} *0.4^{\circ}$
- P(outcome=1) =?

- Repeated coin flip problem
- Assume the random variable is the count of occurrences of heads in 5 coin flips. For example:
- TTTTT yields outcome 0
- HTTTT or TTHTT yields 1
- HTHHT yields 3 ...
- What is the probability of an outcome 0?
- $P(outcome=0) = 0.6^{\circ} *0.4^{\circ}$
- P(outcome=1) = ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Probabilities

- Repeated coin flip problem
- Assume the random variable is the count of occurrences of heads in 5 coin flips. For example:
- TTTTT yields outcome 0
- HTTTT or TTHTT yields 1
- HTHHT yields 3 ...
- What is the probability of an outcome 0?
- $P(outcome=0) = 0.6^{\circ} *0.4^{\circ}$
- P(outcome=1) = C(5,1) 0.61*0.44
- P(outcome = 2) = ?

- Repeated coin flip problem
- Assume the random variable is the count of occurrences of heads in 5 coin flips. For example:
- TTTTT yields outcome 0
- HTTTT or TTHTT yields 1
- HTHHT yields 3 ...
- What is the probability of an outcome 0?
- $P(outcome=0) = 0.6^{\circ} *0.4^{\circ}$
- $P(outcome=1) = C(5,1) 0.6^{1} * 0.4^{4}$
- P(outcome = 2) = $C(5,2) 0.6^2 * 0.4^3$
- P(outcome = 3) = ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Probabilities

- Repeated coin flip problem
- Assume the random variable is the count of occurrences of heads in 5 coin flips. For example:
- TTTTT yields outcome 0
- HTTTT or TTHTT yields 1
- HTHHT yields 3 ...
- What is the probability of an outcome 0?
- $P(outcome=0) = 0.6^{\circ} *0.4^{\circ}$
- $P(outcome=1) = C(5,1) 0.6^{1} *0.4^{4}$
- P(outcome = 2) = $C(5,2) 0.6^2 * 0.4^3$
- P(outcome =3) = $C(5,3) 0.6^3 *0.4^2$
- ...

CS 441 Discrete mathematics for CS