Probabilities

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Course administration

- Homework assignment 10 is out
 - due next week on Friday, April 14, 2006

Course web page:
http://www.cs.pitt.edu/~milos/courses/cs441/
Probabilities

Axioms of the probability theory:

- Probability of a discrete outcome (of a random variable) is:
 - \(0 \leq p(s) \leq 1 \)

- Sum of probabilities over all outcomes is \(= 1 \)

- For any two events \(E_1 \) and \(E_2 \) holds:
 \[
 P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \text{ and } E_2)
 \]

Let \(E_1 \) and \(E_2 \) be two events in the sample space \(S \). Then:

- \(P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \text{ and } E_2) \)

- This is an example of the inclusion-exclusion principle
Probabilities

Definition: A function \(p: S \rightarrow [0,1] \) satisfying axiom conditions is called a **probability distribution**.

A **uniform distribution** is a special case: it assigns an equal probability to each outcome.

Example: a biased coin.
- Probability of head 0.6, probability of a tail 0.4

Probability distribution:
- Head \(\rightarrow 0.6 \) The sum of the two probabilities sums to 1
- Tail \(\rightarrow 0.4 \)

Conditional probability

Definition: Let \(E \) and \(F \) be two events such that \(P(F) > 0 \). The **conditional probability** of \(E \) given \(F \)

\[
P(E|F) = \frac{P(E \text{ and } F)}{P(F)}\]

Example:
- What is the probability that a family has two boys given that they have at least one boy. Assume the probability of having a girl or a boy is equal.

Possibilities. ?
Conditional probability

Definition: Let E and F be two events such that P(F) > 0. The *conditional probability* of E given F

- \(P(E|F) = \frac{P(E \text{ and } F)}{P(F)} \)

Example:
- What is the probability that a family has two boys given that they have at least one boy. Assume the probability of having a girl or a boy is equal.
- **Possibilities.** BB BG GB GG
- \(P(BB) = \frac{1}{4} \)
- \(P(\text{one boy}) = ? \)
Conditional probability

Definition: Let E and F be two events such that $P(F) > 0$. The **conditional probability** of E given F

- $P(E | F) = \frac{P(E \text{ and } F)}{P(F)}$

Example:
- What is the probability that a family has two boys given that they have at least one boy. Assume the probability of having a girl or a boy is equal.
- **Possibilities.** BB BG GB GG
- $P(BB) = \frac{1}{4}$
- $P(\text{one boy}) = \frac{3}{4}$
- $P(BB | \text{given a boy}) = \frac{(\frac{1}{4})}{(\frac{3}{4})} = \frac{1}{3}$
Independence

Definition: The events E and F are said to be independent if:

- $P(E \text{ and } F) = P(E) \times P(F)$

Example. Assume that E denotes the family has three children of both sexes and F the fact that the family has at most one boy. Are E and F independent?

- All combos =

\{BBB, BBG, BGB, GBB, BGG, GBG, GGB, GGG\}

the number of elements = ?
Independence

Definition: The events E and F are said to be **independent** if:

- $P(E \text{ and } F) = P(E) \times P(F)$

Example. Assume that E denotes the family has three children of both sexes and F the fact that the family has at most one boy. Are E and F independent?

- All combos = \{BBB, BBG, BGB, GBB, BGG, GGB, GGB, GGG\}
 - the number of elements = 8
- Both sexes = ?

Example. Assume that E denotes the family has three children of both sexes and F the fact that the family has at most one boy. Are E and F independent?

- All combos = \{BBB, BBG, BGB, GBB, BGG, GGB, GGB, GGG\}
 - the number of elements = 8
- Both sexes = \{BBG, BGB, GBB, BGG, GGB, GGB\}
 - $\# = 6$
- At most one boy = ?
Independence

Definition: The events E and F are said to be **independent** if:

- \(P(E \text{ and } F) = P(E) \cdot P(F) \)

Example. Assume that E denotes the family has three children of both sexes and F the fact that the family has at most one boy. Are E and F independent?

- All combos = \{BBB, BBG, BGB, GBB, BGG, GBG, GGB, GGG\}
 the number of elements = 8
- Both sexes = \{BBG, BGB, GBB, BGG, GBG, GGB\}
 # = 6
- At most one boy = \{GGG, GGB, GBG, BGG\}
 # = 4
- E and F = ?
 # = ?

\[
P(E \text{ and } F) = P(E) \cdot P(F)
\]
Independence

Definition: The events E and F are said to be independent if:

- $P(E \text{ and } F) = P(E)P(F)$

Example. Assume that E denotes the family has three children of both sexes and F the fact that the family has at most one boy. Are E and F independent?

- All combos = \{BBB, BBG, BGB, GBB, BGG, GBG, GGB, GGG\}
 the number of elements = 8
- Both sexes = \{BBG, BGB, GBB, BGG, GBG, GGB\} # = 6
- At most one boy = \{GGG, GGB, GBG, BGG\} # = 4
- E and F = \{GGB, GBG, BGG\} # = 3
- $P(E \text{ and } F) = \frac{3}{8}$ and $P(E)P(F) = \frac{4}{8} \cdot \frac{6}{8} = \frac{3}{8}$

The two probabilities are equal \rightarrow E and F are independent
Probability distribution

• **Definition: A random variable** is a function from the sample space of an experiment to the set of real numbers \(S \rightarrow \mathbb{R} \). A random variable assigns a number to each possible outcome.

• **The distribution of a random variable** \(X \) **on the sample space**
 \(S \) is a set of pairs \((r, p(X=r))\) for all \(r \) in \(S \) where \(r \) is the number and \(p(X=r) \) is the probability that \(X \) takes a value \(r \).

Bernoulli trial

• **Assume a repeated coin flip**
• \(P(\text{head}) = 0.6 \) and the probability of a tail is 0.4. Each coin flip is independent of the previous.
• What is the probability of seeing:
 • HHHHH - 5 heads in a row
• \(P(\text{HHHHH}) = ? \)
Probabilities

• Assume a repeated coin flip
• P(head) = 0.6 and the probability of a tail is 0.4. Each coin flip is independent of the previous.
• What is the probability of seeing:
 • HHHHH - 5 heads in a row
• \(P(\text{HHHHH}) = 0.6^5 = \)
 • Assume the outcome is HHTTT
• \(P(\text{HHTTT}) =? \)
Probabilities

• Assume a repeated coin flip
• \(P(\text{head}) = 0.6 \) and the probability of a tail is 0.4. Each coin flip is independent of the previous.
• What is the probability of seeing:
 • HHHHH - 5 heads in a row
 • \(P(\text{HHHHH}) = 0.6^5 = \)
 • Assume the outcome is HHTTT
 • \(P(\text{HHTTT}) = 0.6^3 \cdot 0.4^2 = 0.6^2 \cdot 0.4^3 \)
 • Assume the outcome is TTHHT
 • \(P(\text{TTHHT}) = 0.4^2 \cdot 0.6^2 \cdot 0.4 = 0.6^2 \cdot 0.4^3 \)

• What is the probability of seeing three tails and two heads?
Probabilities

- Assume a repeated coin flip
- \(P(\text{head}) = 0.6 \) and the probability of a tail is 0.4. Each coin flip is independent of the previous.
- What is the probability of seeing:
 - HHHHH - 5 heads in a row
- \(P(\text{HHHHH}) = 0.6^5 = \)
 - Assume the outcome is HHTTT
- \(P(\text{HHTTT}) = 0.6 \times 0.6 \times 0.4^3 = 0.6^2 \times 0.4^3 \)
 - Assume the outcome is TTHHT
- \(P(\text{TTHHT}) = 0.4^2 \times 0.6^2 \times 0.4 = 0.6^2 \times 0.4^3 \)
- What is the probability of seeing three tails and two heads?
- The number of two-head-three tail combinations = \(\binom{2}{5} \)
- \(P(\text{two-heads-three tails}) = \binom{2}{5} \times 0.6^2 \times 0.4^3 \)
Probabilities

• **Assume a variant of a repeated coin flip problem**
• The space of possible outcomes is the count of occurrences of heads in 5 coin flips. For example:
 • TTTTT yields outcome 0
 • HTTTT or TTHTT yields 1
 • HTHHT yields 3 …

• What is the probability of an outcome 0?
 • $P(\text{outcome}=0) = 0.6^0 \cdot 0.4^5$
 • $P(\text{outcome}=1) =$?
Probabilities

• **Assume a variant of a repeated coin flip problem**
• The space of possible outcomes is the count of occurrences of heads in 5 coin flips. For example:
 • TTTTT yields outcome 0
 • HTTTT or TTHTT yields 1
 • HTHHT yields 3 …

• What is the probability of an outcome 0?
 • \(P(\text{outcome}=0) = 0.6^0 \cdot 0.4^5 \)
 • \(P(\text{outcome}=1) = \binom{1,5} 0.6^1 \cdot 0.4^4 \)
 • \(P(\text{outcome}=2) = ? \)
 • \(P(\text{outcome}=3) = ? \)
Probabilities

• Assume a variant of a repeated coin flip problem
• The space of possible outcomes is the count of occurrences of heads in 5 coin flips. For example:
 • TTTTT yields outcome 0
 • HTTTT or TTHTT yields 1
 • HTHHT yields 3 …

• What is the probability of an outcome 0?
 • P(outcome=0) = 0.6^0 * 0.4^5
 • P(outcome=1) = C(1, 5) * 0.6^1 * 0.4^4
 • P(outcome =2) = C(2, 5) * 0.6^2 * 0.4^3
 • P(outcome =3) = C(3, 5) * 0.6^3 * 0.4^2
 • …