CS 441 Discrete Mathematics for CS Lecture 30

Probabilities

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 441 Discrete mathematics for CS

M. Hauskrecht

Course administration

- · Homework assignment
 - no assignment is due this week
- Recitation today
 - Midterm solutions

Course web page:

 $http://www.cs.pitt.edu/\!\!\sim\!\!milos/courses/cs441/$

CS 441 Discrete mathematics for CS

Probability

Discrete probability theory.

• Used to compute the odds of seeing some outcomes. Related to counting when the outcomes are equally likely.

Example: Coin flip

- Assume 2 outcomes (head and tail) and each of them is equally likely
- Odds: 50%, 50%
- the probability of seeing:
 - a head is 0.5
 - a tail is 0.5

CS 441 Discrete mathematics for CS

M. Hauskrecht

Probabilities

- Experiment: a procedure that yields one of the possible outcomes
- Sample space: a set of possible outcomes
- Event: a subset of possible outcomes (E is a subset of S)
- Assuming the outcomes are equally likely, the probability of an event E, defined by a subset of outcomes from the sample space S is
 - **P(Event)=** |**E**| / |**S**|
- The cardinality of the subset divided by the cardinality of the sample space.

CS 441 Discrete mathematics for CS

Example 1:

- A box with 4 red balls and 6 blue balls. What is the probability that we pull the red ball out.
- P(E) = ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Probabilities

Example 1:

- A box with 4 red balls and 6 blue balls. What is the probability that we pull the red ball out.
- P(E) = 4/10 = 0.4

CS 441 Discrete mathematics for CS

Example 2:

- roll of two dices.
- What is the probability that the outcome is 7.
- Possible outcomes: ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Probabilities

Example 2:

- roll of two dices.
- What is the probability that the outcome is 7.
- Possible outcomes:
- (1,6)(2,6)...(6,1),...(6,6) total: 36
- Outcomes leading to 7?

CS 441 Discrete mathematics for CS

Example 2:

- roll of two dices.
- What is the probability that the outcome is 7.
- Possible outcomes:
- (1,6)(2,6)...(6,1),...(6,6) total: 36
- Outcomes leading to
- (1,6)(2,5)...(6,1) total: 6
- P(sum=7)=?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Probabilities

Example 2:

- roll of two dices.
- What is the probability that the outcome is 7.
- Possible outcomes:
- (1,6)(2,6)...(6,1),...(6,6) total: 36
- · Outcomes leading to
- (1,6)(2,5)...(6,1) total: 6
- P(sum=7)=6/36=1/6

CS 441 Discrete mathematics for CS

More complex:

- Odd of winning a lottery: 6 numbers out of 40.
- Total number of outcomes: ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Probabilities

More complex:

- Odd of winning a lottery: 6 numbers out of 40.
- Total number of outcomes:
 - C(40,6) = ...
- Probability of winning: ?
 - P(E) = ?

CS 441 Discrete mathematics for CS

More complex:

- Odd of winning a lottery: 6 numbers out of 40.
- Total number of outcomes:
 - C(40,6) = ...
- Probability of winning: ?
 - P(E) = 1/C(40.6) = 34! 6! / 40! = 3.838.380

CS 441 Discrete mathematics for CS

M. Hauskrecht

Probabilities

Theorem: Let E be an event and ~E its complement with regard to S. Then:

•
$$P(\sim E) = 1 - P(E)$$

Sample space

Proof.

CS 441 Discrete mathematics for CS

Theorem: Let E be an event and ~E its complement with regard to S. Then:

•
$$P(\sim E) = 1 - P(E)$$

Sample space

Proof.

$$P(\sim E) = (|S|-|E|)/|S| = 1-|E|/|S|$$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Probabilities

Example:

• 10 randomly generated bits. What is the probability that there is at least one zero in the string.

All strings

- Event: seeing all zero string
- ~Event: seeing at least one string

CS 441 Discrete mathematics for CS

Example:

• 10 randomly generated bits. What is the probability that there is at least one zero in the string.

All strings

- Event: seeing all zero string P(E) = ?
- ~Event: seeing at least one string

CS 441 Discrete mathematics for CS

M. Hauskrecht

Probabilities

Example:

• 10 randomly generated bits. What is the probability that there is at least one zero in the string.

All strings

- Event: seeing all zero string $P(E) = 1/2^{10}$
- ~Event: seeing at least one string $P(\sim E)=$?

CS 441 Discrete mathematics for CS

Example:

• 10 randomly generated bits. What is the probability that there is at least one zero in the string.

All strings

- Event: seeing all zero string $P(E) = 1/2^{10}$
- ~Event: seeing at least one string $P(\sim E) = 1 P(E) = 1 1/2^{10}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Probabilities

Theorem. Let E1 and E2 be two events in the sample space S. Then:

•
$$P(E1 U E2) = P(E1) + P(E2) - P(E1 and E2)$$

• This is an example of the inclusion-exclusion principle

CS 441 Discrete mathematics for CS

Theorem. Let E1 and E2 be two events in the sample space S. Then:

• $P(E1 \cup E2) = P(E1) + P(E2) - P(E1 \text{ and } E2)$

Example: Probability that a positive integer <= 100 is divisible either by 2 or 5.

- E1: the integer is divisible by 2, E2: the integer is divisible by 5
- P(E1)=?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Probabilities

Theorem. Let E1 and E2 be two events in the sample space S. Then:

• $P(E1 \cup E2) = P(E1) + P(E2) - P(E1 \text{ and } E2)$

Example: Probability that a positive integer <= 100 is divisible either by 2 or 5.

- P(E1) = 50/100
- P(E2)=?

CS 441 Discrete mathematics for CS

Theorem. Let E1 and E2 be two events in the sample space S. Then:

• $P(E1 \cup E2) = P(E1) + P(E2) - P(E1 \text{ and } E2)$

Example: Probability that a positive integer <= 100 is divisible either by 2 or 5.

- P(E1) = 50/100
- P(E2)=20/100
- P(E1 and E2) = ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Probabilities

Theorem. Let E1 and E2 be two events in the sample space S. Then:

• P(E1 U E2) = P(E1) + P(E2) - P(E1 and E2)

Example: Probability that a positive integer <= 100 is divisible either by 2 or 5.

- P(E1) = 50/100
- P(E2)=20/100
- P(E1 and E2) = 10/100
- P(E1 U E2) = ?

CS 441 Discrete mathematics for CS

Theorem. Let E1 and E2 be two events in the sample space S. Then:

• $P(E1 \cup E2) = P(E1) + P(E2) - P(E1 \text{ and } E2)$

Example: Probability that a positive integer <= 100 is divisible either by 2 or 5.

- P(E1) = 50/100
- P(E2) = 20/100
- P(E1 and E2) = 10/100
- P(E1 U E2) = (5+2-1)/10 = 6/10

CS 441 Discrete mathematics for CS

M. Hauskrecht

Probabilities

- Assumption applied so far:
 - the probabilities of each outcome are equally likely.
- However in many cases outcome may not be equally likely.

Example: a biased coin or a biased dice.

• Probability of head 0.6, probability of a tail 0.4.

CS 441 Discrete mathematics for CS

Axioms of the probability theory:

- Probability of a discrete outcome is:
 - 0 < = p(s) <= 1
- Sum of probabilities over all outcomes is = 1
- For any two events E1 and E2 holds:
 P(E1 U E2) = P(E1) + P(E2) P(E1 and E2)

CS 441 Discrete mathematics for CS

M. Hauskrecht

Probabilities

Definition: A function p: $S \rightarrow [0,1]$ satisfying a condition is called a **probability distribution.**

A uniform distribution is a special case: assigns an equal probability to each outcome.

Example: a biased coin.

• Probability of head 0.6, probability of a tail 0.4

Probability distribution:

- Head \rightarrow 0.6 The sum of the two probabilities sums to 1
- Tail \rightarrow 0.4

Conditional probability

Definition: Let E and F be two events such that P(F) > 0. The **conditional probability** of E given F

- P(E|F) = P(E and F) / P(F)
- Example:
- What is the probability that a family has two boys given that they have at least one boy. Assume the probability of having a girl or a boy is equal.
- Possibilities. ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Conditional probability

Definition: Let E and F be two events such that P(F) > 0. The **conditional probability** of E given F

- P(E|F) = P(E and F) / P(F)
- Example:
- What is the probability that a family has two boys given that they have at least one boy. Assume the probability of having a girl or a boy is equal.
- Possibilities. BB BG GB GG
- P(BB) = ?

CS 441 Discrete mathematics for CS

Conditional probability

Definition: Let E and F be two events such that P(F) > 0. The **conditional probability** of E given F

- P(E|F) = P(E and F) / P(F)
- Example:
- What is the probability that a family has two boys given that they have at least one boy. Assume the probability of having a girl or a boy is equal.
- Possibilities. BB BG GB GG
- $P(BB) = \frac{1}{4}$
- P(one boy) = ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Conditional probability

Definition: Let E and F be two events such that P(F) > 0. The **conditional probability** of E given F

- P(E|F) = P(E and F) / P(F)
- Example:
- What is the probability that a family has two boys given that they have at least one boy. Assume the probability of having a girl or a boy is equal.
- · Possibilities. BB BG GB GG
- $P(BB) = \frac{1}{4}$
- **P(one boy)** = $\frac{3}{4}$
- P(BB|given a boy) = ?

CS 441 Discrete mathematics for CS

Conditional probability

Definition: Let E and F be two events such that P(F) > 0. The **conditional probability** of E given F

• P(E|F) = P(E and F) / P(F)

Example:

- What is the probability that a family has two boys given that they have at least one boy. Assume the probability of having a girl or a boy is equal.
- · Possibilities. BB BG GB GG
- $P(BB) = \frac{1}{4}$
- P(one boy) = $\frac{3}{4}$
- $P(BB|given \ a \ boy) = \frac{1}{4} / \frac{3}{4} = \frac{1}{3}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Independence

Definition: The events E and F are said to be **independent** if:

• P(E and F) = P(E)P(F)

Example. Assume that E denotes the family has three children of both sexes and F the fact that the family has at most one boy. Are E and F independent?

• All combos =

CS 441 Discrete mathematics for CS

Definition: The events E and F are said to be **independent** if:

• P(E and F) = P(E)P(F)

Example. Assume that E denotes the family has three children of both sexes and F the fact that the family has at most one boy. Are E and F independent?

• All combos = {BBB, BBG, BGB, GBB,BGG,GBG,GGB,GGG} the number of elements = ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Independence

Definition: The events E and F are said to be **independent** if:

• P(E and F) = P(E)P(F)

Example. Assume that E denotes the family has three children of both sexes and F the fact that the family has at most one boy. Are E and F independent?

- All combos = {BBB, BBG, BGB, GBB,BGG,GBG,GGB,GGG} the number of elements = 8
- Both sexes = ?

CS 441 Discrete mathematics for CS

Definition: The events E and F are said to be **independent** if:

• P(E and F) = P(E)P(F)

Example. Assume that E denotes the family has three children of both sexes and F the fact that the family has at most one boy. Are E and F independent?

- All combos = {BBB, BBG, BGB, GBB,BGG,GBG,GGB,GGG} the number of elements = 8
- Both sexes = {BBG BGB GBB BGG GBG GGB} #=6
- At most one boy = ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Independence

Definition: The events E and F are said to be **independent** if:

• P(E and F) = P(E)P(F)

Example. Assume that E denotes the family has three children of both sexes and F the fact that the family has at most one boy. Are E and F independent?

- All combos = {BBB, BBG, BGB, GBB,BGG,GBG,GGB,GGG} the number of elements = 8
- Both sexes = {BBG BGB GBB BGG GBG GGB} #=6
- At most one boy = {GGG GGB GBG BGG} #= 4
- E and F = ?

CS 441 Discrete mathematics for CS

Definition: The events E and F are said to be **independent** if:

• P(E and F) = P(E)P(F)

Example. Assume that E denotes the family has three children of both sexes and F the fact that the family has at most one boy. Are E and F independent?

- All combos = {BBB, BBG, BGB, GBB,BGG,GBG,GGB,GGG} the number of elements = 8
- Both sexes = {BBG BGB GBB BGG GBG GGB} #=6
- At most one boy = {GGG GGB GBG BGG} #= 4
- E and $F = \{GGB GBG BGG\}$ # = 3
- P(E and F) = ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Independence

Definition: The events E and F are said to be **independent** if:

• P(E and F) = P(E)P(F)

Example. Assume that E denotes the family has three children of both sexes and F the fact that the family has at most one boy. Are E and F independent?

- All combos = {BBB, BBG, BGB, GBB,BGG,GBG,GGB,GGG} the number of elements = 8
- Both sexes = {BBG BGB GBB BGG GBG GGB} #=6
- At most one boy = {GGG GGB GBG BGG} #= 4
- E and $F = \{GGB GBG BGG\}$ # = 3
- P(E and F) = 3/8 and P(E)*P(F)=?

CS 441 Discrete mathematics for CS

Definition: The events E and F are said to be **independent** if:

• P(E and F) = P(E)P(F)

Example. Assume that E denotes the family has three children of both sexes and F the fact that the family has at most one boy. Are E and F independent?

- All combos = {BBB, BBG, BGB, GBB,BGG,GBG,GGB,GGG} the number of elements = 8
- Both sexes = {BBG BGB GBB BGG GBG GGB} #=6
- At most one boy = {GGG GGB GBG BGG} #= 4
- E and $F = \{GGB GBG BGG\}$ # = 3
- P(E and F) = 3/8 and P(E)*P(F) = 4/8 6/8 = 3/8
- The two probabilities are equal \rightarrow E and F are independent

CS 441 Discrete mathematics for CS