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CS 441 Discrete Mathematics for CS
Lecture 30

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Probabilities

CS 441 Discrete mathematics for CS M. Hauskrecht

Course administration

• Homework assignment
– no assignment is due this week

• Recitation today
– Midterm solutions

Course web page:
http://www.cs.pitt.edu/~milos/courses/cs441/
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Probability
Discrete probability theory. 
• Used to compute the odds of seeing some outcomes. Related to 

counting when the outcomes are equally likely. 

Example: Coin flip
• Assume 2 outcomes (head and tail) and each of them is equally 

likely
• Odds: 50%, 50% 
• the probability of seeing:  

• a head is 0.5 
• a tail is 0.5
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Probabilities
• Experiment: a procedure that yields one of the possible 

outcomes
• Sample space: a set of possible outcomes
• Event: a subset  of possible outcomes   (E is a subset of S)
• Assuming the outcomes are equally likely, the probability of 

an event E, defined by a subset of outcomes from the sample 
space S is 

• P(Event)= |E| / |S|

• The cardinality of the subset divided by the cardinality of the 
sample space.
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Probabilities
Example 1:
• A box with 4 red balls and 6 blue balls. What is the probability

that we pull the red ball out.

• P(E) =?
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Probabilities
Example 1:
• A box with 4 red balls and 6 blue balls. What is the probability

that we pull the red ball out.

• P(E) =4/10 =0.4
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Probabilities
Example 2:
• roll of two dices. 
• What is the probability that the outcome is 7.
• Possible outcomes: ?
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Probabilities
Example 2:
• roll of two dices. 
• What is the probability that the outcome is 7.
• Possible outcomes: 
• (1,6 ) (2,6) …(6,1),…(6,6)    total: 36

• Outcomes leading to 7? 
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Probabilities
Example 2:
• roll of two dices. 
• What is the probability that the outcome is 7.
• Possible outcomes: 
• (1,6 ) (2,6) …(6,1),…(6,6)    total: 36

• Outcomes leading to 
• (1,6 ) (2,5) …(6,1)    total: 6
• P(sum=7)= ?
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Probabilities
Example 2:
• roll of two dices. 
• What is the probability that the outcome is 7.
• Possible outcomes: 
• (1,6 ) (2,6) …(6,1),…(6,6)    total: 36

• Outcomes leading to 
• (1,6 ) (2,5) …(6,1)    total: 6
• P(sum=7)= 6/36 = 1/6
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Probabilities
More complex: 
• Odd of winning a lottery: 6 numbers out of 40.
• Total number of outcomes: ?
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Probabilities
More complex: 
• Odd of winning a lottery: 6 numbers out of 40.
• Total number of outcomes: 

• C(40,6) = … 
• Probability of winning: ? 

• P(E) =?
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Probabilities
More complex: 
• Odd of winning a lottery: 6 numbers out of 40.
• Total number of outcomes: 

• C(40,6) = … 
• Probability of winning: ? 

• P(E) =1/C(40,6)=  34! 6! / 40! = 3,838,380
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Probabilities
Theorem: Let E be an event and ~E its complement with regard to 

S. Then:
• P(~E) = 1 – P(E)

Sample space

E~E

Proof.
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Probabilities
Theorem: Let E be an event and ~E its complement with regard to 

S. Then:
• P(~E) = 1 – P(E)

Proof. 
P(~E) = ( |S|- |E|) /| S |  = 1- |E| / |S|

Sample space

E~E
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Probabilities
Example:
• 10 randomly generated bits. What is the probability that there is 

at least one zero in the string.

• Event: seeing all zero string 
• ~Event: seeing at least one string

All strings

No zero At least one zero
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Probabilities
Example:
• 10 randomly generated bits. What is the probability that there is 

at least one zero in the string.

• Event: seeing all zero string     P(E) =?
• ~Event: seeing at least one string

All strings

No zero At least one zero
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Probabilities
Example:
• 10 randomly generated bits. What is the probability that there is 

at least one zero in the string.

• Event: seeing all zero string     P(E) =1/ 210

• ~Event: seeing at least one string  P(~E)= ?

All strings

No zero At least one zero
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Probabilities
Example:
• 10 randomly generated bits. What is the probability that there is 

at least one zero in the string.

• Event: seeing all zero string     P(E) =1/ 210

• ~Event: seeing at least one string  P(~E)= 1-P(E)=1- 1/210

All strings

No zero At least one zero
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Probabilities
Theorem. Let E1 and E2 be two events in the sample space S. 

Then:
• P(E1 U E2) = P(E1) + P(E2) – P(E1 and E2)

• This is an example of the inclusion-exclusion principle

U

E2

E1
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Probabilities
Theorem. Let E1 and E2 be two events in the sample space S. 

Then:
• P(E1 U E2) = P(E1) + P(E2) – P(E1 and E2)

Example: Probability that a positive integer <= 100 is divisible 
either by 2 or 5.

• E1: the integer is divisible by 2, E2: the integer is divisible by 5 
• P(E1)= ?

CS 441 Discrete mathematics for CS M. Hauskrecht

Probabilities
Theorem. Let E1 and E2 be two events in the sample space S. 

Then:
• P(E1 U E2) = P(E1) + P(E2) – P(E1 and E2)

Example: Probability that a positive integer <= 100 is divisible 
either by 2 or 5. 

• P(E1)= 50/100
• P(E2)= ?
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Probabilities
Theorem. Let E1 and E2 be two events in the sample space S. 

Then:
• P(E1 U E2) = P(E1) + P(E2) – P(E1 and E2)

Example: Probability that a positive integer <= 100 is divisible 
either by 2 or 5.

• P(E1)= 50/100
• P(E2)= 20/100
• P(E1 and E2) = ?
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Probabilities
Theorem. Let E1 and E2 be two events in the sample space S. 

Then:
• P(E1 U E2) = P(E1) + P(E2) – P(E1 and E2)

Example: Probability that a positive integer <= 100 is divisible 
either by 2 or 5. 

• P(E1)= 50/100
• P(E2)= 20/100
• P(E1 and E2) = 10/100
• P(E1 U E2) = ?
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Probabilities
Theorem. Let E1 and E2 be two events in the sample space S. 

Then:
• P(E1 U E2) = P(E1) + P(E2) – P(E1 and E2)

Example: Probability that a positive integer <= 100 is divisible 
either by 2 or 5. 

• P(E1)= 50/100
• P(E2)= 20/100
• P(E1 and E2) = 10/100
• P(E1 U E2) = (5+2-1)/10 = 6/10
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Probabilities
• Assumption applied so far: 

– the probabilities of each outcome are equally likely.
• However in many cases outcome may not be equally likely.

Example: a biased coin or a biased dice. 
• Probability of head 0.6, probability of a tail 0.4. 
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Probabilities
Axioms of the probability theory:
• Probability of a discrete outcome is:

• 0 < = p(s) <= 1

• Sum of probabilities over all outcomes is = 1

• For any two events E1 and E2 holds:
P(E1 U E2) = P(E1) + P(E2) – P(E1 and E2)
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Probabilities
Definition: A function p: S [0,1] satisfying a condition is called 

a probability distribution. 

A uniform distribution is a special case: assigns an equal 
probability to each outcome.

Example: a biased coin. 
• Probability of head 0.6, probability of a tail 0.4
Probability distribution:
• Head 0.6            The sum of the two probabilities sums to 1
• Tail  0.4
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Conditional probability
Definition: Let E and F be two events such that P(F) > 0. The 

conditional probability of E given F 
• P(E|F) = P(E and F) / P(F)

• Example: 
• What is the probability that a family has two boys given that 

they have at least one boy. Assume the probability of having a 
girl or a boy is equal.  

• Possibilities.  ?
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Conditional probability
Definition: Let E and F be two events such that P(F) > 0. The 

conditional probability of E given F 
• P(E|F) = P(E and F) / P(F)

• Example: 
• What is the probability that a family has two boys given that 

they have at least one boy. Assume the probability of having a 
girl or a boy is equal.  

• Possibilities.  BB BG GB GG
• P(BB) = ?
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Conditional probability
Definition: Let E and F be two events such that P(F) > 0. The 

conditional probability of E given F 
• P(E|F) = P(E and F) / P(F)

• Example: 
• What is the probability that a family has two boys given that 

they have at least one boy. Assume the probability of having a 
girl or a boy is equal.  

• Possibilities.  BB BG GB GG
• P(BB) = ¼
• P(one boy) = ?
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Conditional probability
Definition: Let E and F be two events such that P(F) > 0. The 

conditional probability of E given F 
• P(E|F) = P(E and F) / P(F)

• Example: 
• What is the probability that a family has two boys given that 

they have at least one boy. Assume the probability of having a 
girl or a boy is equal.  

• Possibilities.  BB BG GB GG
• P(BB) = ¼
• P(one boy) = ¾
• P(BB|given a boy) = ?
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Conditional probability
Definition: Let E and F be two events such that P(F) > 0. The 

conditional probability of E given F 
• P(E|F) = P(E and F) / P(F)

Example: 
• What is the probability that a family has two boys given that 

they have at least one boy. Assume the probability of having a 
girl or a boy is equal.  

• Possibilities.  BB BG GB GG
• P(BB) = ¼
• P(one boy) = ¾
• P(BB|given a boy) = ¼ / ¾ = 1/3
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Independence
Definition: The events E and F are said  to be independent if:

• P(E and F) = P(E)P(F) 

Example. Assume that  E denotes the family has three children of 
both sexes and F the fact that the family has at most one boy. 
Are E and F independent?

• All combos = 
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Independence
Definition: The events E and F are said  to be independent if:

• P(E and F) = P(E)P(F) 

Example. Assume that  E denotes the family has three children of 
both sexes and F the fact that the family has at most one boy. 
Are E and F independent?

• All combos = {BBB, BBG, BGB, GBB,BGG,GBG,GGB,GGG}  
the number of elements = ?
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Independence
Definition: The events E and F are said  to be independent if:

• P(E and F) = P(E)P(F) 

Example. Assume that  E denotes the family has three children of 
both sexes and F the fact that the family has at most one boy. 
Are E and F independent?

• All combos = {BBB, BBG, BGB, GBB,BGG,GBG,GGB,GGG}  
the number of elements = 8

• Both sexes = ?
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Independence
Definition: The events E and F are said  to be independent if:

• P(E and F) = P(E)P(F) 

Example. Assume that  E denotes the family has three children of 
both sexes and F the fact that the family has at most one boy. 
Are E and F independent?

• All combos = {BBB, BBG, BGB, GBB,BGG,GBG,GGB,GGG}  
the number of elements = 8

• Both sexes = {BBG BGB GBB BGG GBG GGB}   # = 6
• At most one boy = ?
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Independence
Definition: The events E and F are said  to be independent if:

• P(E and F) = P(E)P(F) 

Example. Assume that  E denotes the family has three children of 
both sexes and F the fact that the family has at most one boy. 
Are E and F independent?

• All combos = {BBB, BBG, BGB, GBB,BGG,GBG,GGB,GGG}  
the number of elements = 8

• Both sexes = {BBG BGB GBB BGG GBG GGB}   # = 6
• At most one boy = {GGG GGB GBG BGG}     # = 4
• E and F = ?
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Independence
Definition: The events E and F are said  to be independent if:

• P(E and F) = P(E)P(F) 

Example. Assume that  E denotes the family has three children of 
both sexes and F the fact that the family has at most one boy. 
Are E and F independent?

• All combos = {BBB, BBG, BGB, GBB,BGG,GBG,GGB,GGG}  
the number of elements = 8

• Both sexes = {BBG BGB GBB BGG GBG GGB}   # = 6
• At most one boy = {GGG GGB GBG BGG}     # = 4
• E and F = {GGB GBG BGG}       # = 3
• P(E and F}  = ?        
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Independence
Definition: The events E and F are said  to be independent if:

• P(E and F) = P(E)P(F) 

Example. Assume that  E denotes the family has three children of 
both sexes and F the fact that the family has at most one boy. 
Are E and F independent?

• All combos = {BBB, BBG, BGB, GBB,BGG,GBG,GGB,GGG}  
the number of elements = 8

• Both sexes = {BBG BGB GBB BGG GBG GGB}   # = 6
• At most one boy = {GGG GGB GBG BGG}     # = 4
• E and F = {GGB GBG BGG}       # = 3
• P(E and F}  = 3/8        and     P(E)*P(F)= ?
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Independence
Definition: The events E and F are said  to be independent if:

• P(E and F) = P(E)P(F) 

Example. Assume that  E denotes the family has three children of 
both sexes and F the fact that the family has at most one boy. 
Are E and F independent?

• All combos = {BBB, BBG, BGB, GBB,BGG,GBG,GGB,GGG}  
the number of elements = 8

• Both sexes = {BBG BGB GBB BGG GBG GGB}   # = 6
• At most one boy = {GGG GGB GBG BGG}     # = 4
• E and F = {GGB GBG BGG}       # = 3
• P(E and F}  = 3/8        and     P(E)*P(F)= 4/8 6/8 = 3/8
• The two probabilities are equal E and F are independent


