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Propositional logic: review

* Propositional logic: a formal language for making logical
inferences

* A proposition is a statement that is either true or false.

* A compound proposition can be created from other
propositions using logical connectives

* The truth of a compound proposition is defined by truth
values of elementary propositions and the meaning of
connectives.

* The truth table for a compound proposition: table with

entries (rows) for all possible combinations of truth values of
elementary propositions.
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Translation

If you are older than 13 or you are with your parents then you can
attend a PG-13 movie.

Parse:

» If (you are older than 13 or you are with your parents ) then
( you can attend a PG-13 movie)

— A=you are older than 13

— B=you are with your parents

— C=you can attend a PG-13 movie
* Translation: AvB— C

* Why do we want to do this?

e Inference: Assume I know that A v B — C is a correct
statement and both A and B are true. Then we can
conclude that C is true as well.
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Computer representation of True and False

* We need to encode two values True and False:
— use a bit
— a bit represents two possible values:
— 0 (False) or 1(True)

» A variable that takes on values 0 or 1 is called a Boolean
variable.

+ Definition: A bit string is a sequence of zero or more bits.
The length of this string is the number of bits in the string.
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Bitwise operations

* T and F replaced with 1 and 0

P q PVvq PAQ
1 1 1
1 0 1 0
0 1 1 0
0 0 0 0
P P
1 0
0 1
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Bitwise operations
« Examples:
1011 0011 1011 0011 1011 0011
v 01101010 A 01101010 @ 01101010
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« Examples:

Bitwise operations

1011 0011 1011 0011 1011 0011
v 01101010 A 01101010 @ 01101010
11111011
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« Examples:

1011 0011

v 01101010

1111 1011

Bitwise operations

1011 0011 1011 0011
A 01101010 ® 01101010
0010 0010

CS 441 Discrete mathematics for CS M. Hauskrecht




Bitwise operations

« Examples:

1011 0011 1011 0011 1011 0011

v 01101010 A 01101010 @ 01101010

11111011 0010 0010 1101 1001
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Tautology and Contradiction
» Some propositions are interesting since their values in the truth
table are always the same
Definitions:

* A compound proposition that is always true for all possible
truth values of the propositions is called a tautology.

» A compound proposition that is always false is called a
contradiction.

* A proposition that is neither a tautology nor contradiction is
called a contingency.

Example: p v 7p

P P pvp
T F
F T
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Tautology and Contradiction
» Some propositions are interesting since their values in the truth
table are always the same
Definitions:

* A compound proposition that is always true for all possible
truth values of the propositions is called a tautology.

* A compound proposition that is always false is called a
contradiction.

* A proposition that is neither a tautology nor contradiction is
called a contingency.

Example: p v —pis a tautology.

P P pv™p
T F T
F T T
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Tautology and Contradiction
* Some propositions are interesting since their values in the truth
table are always the same
Definitions:

* A compound proposition that is always true for all possible
truth values of the propositions is called a tautology.

* A compound proposition that is always false is called a
contradiction.

* A proposition that is neither a tautology nor contradiction is
called a contingency.

Example: pA—p

P

pATP

P
T
F

F
T
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Tautology and Contradiction
» Some propositions are interesting since their values in the truth
table are always the same
Definitions:

* A compound proposition that is always true for all possible
truth values of the propositions is called a tautology.

* A compound proposition that is always false is called a
contradiction.

» A proposition that is neither a tautology nor contradiction is
called a contingency.

Example: p A —pis a contradiction.

P P pPATP
T F F
F T F
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Equivalence

* We have seen that some of the propositions are equivalent.
Their truth values in the truth table are the same.

* Example: p > q is equivalentto ~q — —p (contrapositive)

P—>q -q—>7p

mn(m|H|d|o
nl-|n|H|e
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Equivalence

We have seen that some of the propositions are equivalent.
Their truth values in the truth table are the same.

Example: p —> q is equivalent to —q — —p (contrapositive)

p q P—>q -q—>7p
T T T
T F F
F T T
F F T
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Equivalence

We have seen that some of the propositions are equivalent.
Their truth values in the truth table are the same.

Example: p — q is equivalentto —q — —p (contrapositive)

P q pP—>q ~q—>7p
T T T T
T F F F
F T T T
F F T T

Equivalent statements are important for logical reasoning
since they can be substituted and can help us to make a logical

argument.
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Logical equivalence

 Definition: The propositions p and q are called logically
equivalent if p <> q is a tautology (alternately, if they have the
same truth table). The notation p <=> q denotes p and q are
logically equivalent.

+ Example: p > q is equivalent to ~q — —p (contrapositive)
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Logical equivalence

 Definition: The propositions p and q are called logically
equivalent if p <> q is a tautology (alternately, if they have the
same truth table). The notation p <=> q denotes p and q are
logically equivalent.

* p—q is equivalentto ~q — —p (contrapositive)

p q (P21 ~q-p Eff_flg
T T T T

T F F F T

F T T T T

F F T T T
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Logical equivalence

 Definition: The propositions p and q are called logically
equivalent if p <> q is a tautology (alternately, if they have the
same truth table). The notation p <=> q denotes p and q are
logically equivalent.

Important equivalences:

* DeMorgan's Laws:

. ) =(pvq) <=>"pAr—q
. 2) «(prq) <=>"pVvq

Example: Negate "The summer in Mexico is cold and sunny"
with DeMorgan's Laws

Solution: ?
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Equivalence

 Definition: The propositions p and q are called logically
equivalent if p <> q is a tautology (alternately, if they have the
same truth table). The notation p <=> q denotes p and q are
logically equivalent.

Example of important equivalences
* DeMorgan's Laws:

y ) =(pvq) <=>pAr—q

y 2) (prq) <==>7pvq

Example: Negate "The summer in Mexico is cold and sunny"
with DeMorgan's Laws

Solution: "The summer in Mexico is not cold or not sunny."
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Equivalence

Example of important equivalences

* DeMorgan's Laws:

1) «(pvq) <=>pAr—q
2) «(paq) <=>pv—q

To convince us that two propositions are logically equivalent

use the truth table
P q 7p 7q “(pva)|PATq
T T F F
T F F T
F T T F
F F T T
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Equivalence

Example of important equivalences

* DeMorgan's Laws:

1) «(pvq) <=>pA—q
2) A(pArq) <=>pv—q

To convince us that two propositions are logically equivalent

use the truth table
p q 7p 7q “(pva)|l"PATq
T T F F F
T F F T F
F T T F F
F F T T T
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Equivalence

Example of important equivalences

* DeMorgan's Laws:

1) «(pvq) <=>pAr—q
2) «(paq) <=>pv—q

To convince us that two propositions are logically equivalent

use the truth table
P q 7p 7q “(pva)|PATq
T T F F F F
T F F T F F
F T T F F F
F F T T T T
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Equivalence

Example of important equivalences

* DeMorgan's Laws:

1) «(pvq) <=>pA—q
2) A(pArq) <=>pv—q

To convince us that two propositions are logically equivalent

use the truth table
p q 7p 7q “(pva)|l"PATq
T T F F F F
T F F T F F
F T T F F F
F F T T T T
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Important logical equivalences

Identity
-pAT <=0p
—-pvF <=p

Domination
—pvT <=T
—pAF <= F

Idempotent
—pVvp <=>p
—pPAp <=>p
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Important logical equivalences

Double negation
- ~(p) <=>p

Commutative
-pvq <= qvVvp
—pPAqQ <=> qQAp

Associative
-(pv@vr <= pv(qvr)
—(PAQAT <= pA(qQAT)
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Important logical equivalences

e Distributive
— pv(gAar) <=> (pvAa(pvr)
- pa(@Qvr) <= (pAqQV(pAT)

* De Morgan
- (pvq) <=>pA—q
- (pAq) <=>pv—q

* Other useful equivalences
—pvp<=>T
—pAp<=F
-P—>q <=>(pVva)
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Using logical equivalences

* Equivalences can be used in proofs. A proposition or its part
can be transformed using equivalences and some conclusion

can be reached.

Example: Show that (p A q) — p is a tautology.
* Proof: (we must show (p A q) > p <=> T)
PAQ—>p <= ~(pAqQ VD Useful
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Using logical equivalences

* Equivalences can be used in proofs. A proposition or its part
can be transformed using equivalences and some conclusion
can be reached.

Example: Show that (p A q) — p is a tautology.
* Proof: (we must show (pAq) > p <=> T)
PAg—>p <= ~(PAQVD Useful
<=>[pv—q]lvp DeMorgan
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Using logical equivalences

* Equivalences can be used in proofs. A proposition or its part
can be transformed using equivalences and some conclusion
can be reached.

Example: Show that (p A q) — p is a tautology.
* Proof: (we must show (p Aq) > p <=> T)
PArqQ—>p <= ~(pAQ VP Useful
<=>[pv—q]lvp DeMorgan

<=> [qvp]Vvp Commutative
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Using logical equivalences

* Equivalences can be used in proofs. A proposition or its part
can be transformed using equivalences and some conclusion
can be reached.

Example: Show that (p A q) — p is a tautology.
* Proof: (we must show (p Aq) > p <=> T)

PAQ—>p <= ~(pArqQ VP Useful
<=>[pv—q]vp DeMorgan
<=> [qv-p]Vvp Commutative
<= —qv[Ppvp] Associative
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Using logical equivalences

* Equivalences can be used in proofs. A proposition or its part
can be transformed using equivalences and some conclusion
can be reached.

Example: Show that (p A q) — p is a tautology.
* Proof: (we must show (p A q) > p <=> T)

PArq@—>p <=> (pArQ VD Useful
<=> [pv—q]Vvp DeMorgan
<=> [qVvp]lVvp Commutative
<=> —qv|[Dpvp] Associative
<=> —qv|[T] Useful
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Using logical equivalences

* Equivalences can be used in proofs. A proposition or its part
can be transformed using equivalences and some conclusion
can be reached.

Example: Show that (p A q) — p is a tautology.
* Proof: (we must show (p Aq) > p <=> T)

PArqQ—=>p <= (pAqVD Useful
<=>[pv—q]lvp DeMorgan
<=> [~qVvp]lVvp Commutative
<=> —qv|[Dpvp] Associative
<=> —qv|[T] Useful
<= T Domination
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Using logical equivalences

» Equivalences can be used in proofs. A proposition or its part
can be transformed using equivalences and some conclusion
can be reached.

Example: Show (p A q) — p is a tautology.
 Alternative proof:

p q PAQ (PAQ)—p
T T T T
T F F T
F T F T
F F F T
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Using logical equivalences
Equivalences can be used in proofs. A proposition or its part

can be transformed using equivalences and some conclusion
can be reached.

Example 2: Show (p—>q) <=> (—q— —p)

Proof:
P—>q <=> (7q—> D)
<= 9
CS 441 Discrete mathematics for CS M. Hauskrecht

Using logical equivalences
Equivalences can be used in proofs. A proposition or its part

can be transformed using equivalences and some conclusion
can be reached.

Example 2: Show (p—>q) <=> (—q—> —p)

Proof:
(P—>q <=> (74— ")
<=> —~(—q) v ("p) Useful
<=> 9
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Using logical equivalences
Equivalences can be used in proofs. A proposition or its part

can be transformed using equivalences and some conclusion
can be reached.

Example 2: Show (p—>q) <=> (—q— —p)

Proof:
(P—>9 <= (—q—>p)
<=> —(—q) v (-p) Useful
<=> qv(p) Double negation
<=> 9
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Using logical equivalences
Equivalences can be used in proofs. A proposition or its part

can be transformed using equivalences and some conclusion
can be reached.

Example 2: Show (p—>q) <=> (—q—> —p)

Proof:
P—>q <> (79— D)
<=> ~(—q) v ("p) Useful
<=> qv(p) Double negation
<=> —pvq Commutative
<=> ?
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Using logical equivalences

Equivalences can be used in proofs. A proposition or its part
can be transformed using equivalences and some conclusion
can be reached.

Example 2: Show

Proof:

(Pp—>q <= (—/q—>p)

End of proof

<=>

<=>

<=>

<=>

~(—q) v (7p)
qVv (p)
pvq
p—>q

(Pp—>9q9 <=> (7q—>p)

Useful

Double negation
Commutative
Useful
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