CS 441 Discrete Mathematics for CS Lecture 3

Propositional logic Equivalences

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 441 Discrete mathematics for CS

M. Hauskrecht

Propositional logic: review

- **Propositional logic:** a formal language for making logical inferences
- A proposition is a statement that is either true or false.
- A compound proposition can be created from other propositions using logical connectives
- The truth of a compound proposition is defined by truth values of elementary propositions and the meaning of connectives.
- The truth table for a compound proposition: table with entries (rows) for all possible combinations of truth values of elementary propositions.

CS 441 Discrete mathematics for CS

Translation

If you are older than 13 or you are with your parents then you can attend a PG-13 movie.

Parse:

- If (you are older than 13 or you are with your parents) then (you can attend a PG-13 movie)
 - A= you are older than 13
 - B= you are with your parents
 - C=you can attend a PG-13 movie
- Translation: $A \vee B \rightarrow C$
- Why do we want to do this?
- Inference: Assume I know that A ∨ B → C is a correct statement and both A and B are true. Then we can conclude that C is true as well.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Computer representation of True and False

- We need to encode two values True and False:
 - use a bit
 - a bit represents two possible values:
 - 0 (False) or 1(True)
- A variable that takes on values 0 or 1 is called a **Boolean** variable.
- <u>Definition</u>: A bit string is a sequence of zero or more bits. The **length** of this string is the number of bits in the string.

CS 441 Discrete mathematics for CS

Bitwise operations

• T and F replaced with 1 and 0

р	q	p ∨ q	p ∧ q
1	1	1	1
1	0	1	0
0	1	1	0
0	0	0	0

р	¬р
1	0
0	1

CS 441 Discrete mathematics for CS

M. Hauskrecht

Bitwise operations

• Examples:

$$1011\ 0011 \\ \lor \underline{0110\ 1010}$$

$$\oplus$$
 0110 1010

Bitwise operations

• Examples:

 $\begin{array}{c} 1011\ 0011 \\ \vee\ \underline{0110\ 1010} \\ 1111\ 1011 \end{array}$

1011 0011 ^ 0110 1010 1011 0011

⊕ <u>0110 1010</u>

CS 441 Discrete mathematics for CS

M. Hauskrecht

Bitwise operations

• Examples:

 $\begin{array}{c} 1011\ 0011 \\ \vee\ \underline{0110\ 1010} \\ 1111\ 1011 \end{array}$

1011 0011 ^ 0110 1010 0010 0010 $\begin{array}{c} 1011\ 0011 \\ \oplus \ 0110\ 1010 \end{array}$

CS 441 Discrete mathematics for CS

Bitwise operations

Examples:

1011 0011 v 0110 1010 1111 1011 0010 0010

1011 0011 ∧ 0110 1010

1011 0011 \oplus 0110 1010

1101 1001

CS 441 Discrete mathematics for CS

M. Hauskrecht

Tautology and Contradiction

Some propositions are interesting since their values in the truth table are always the same

Definitions:

- A compound proposition that is always true for all possible truth values of the propositions is called a tautology.
- A compound proposition that is always false is called a contradiction.
- A proposition that is neither a tautology nor contradiction is called a **contingency**.

Example: $p \vee \neg p$

р	٦p	p ∨ ¬p
T	F	
F	Т	

CS 441 Discrete mathematics for CS

Tautology and Contradiction

• Some propositions are interesting since their values in the truth table are always the same

Definitions:

- A compound proposition that is always true for all possible truth values of the propositions is called a **tautology**.
- A compound proposition that is always false is called a **contradiction**.
- A proposition that is neither a tautology nor contradiction is called a **contingency**.

Example: $p \lor \neg p$ is a **tautology.**

р	٦p	p∨¬p
Т	F	Т
F	Т	Т

CS 441 Discrete mathematics for CS

M. Hauskrecht

Tautology and Contradiction

• Some propositions are interesting since their values in the truth table are always the same

Definitions:

- A compound proposition that is always true for all possible truth values of the propositions is called a **tautology**.
- A compound proposition that is always false is called a **contradiction**.
- A proposition that is neither a tautology nor contradiction is called a **contingency**.

Example: $p \land \neg p$

р	¬p	p ∧ ¬p
T	F	
F	Т	

CS 441 Discrete mathematics for CS

Tautology and Contradiction

• Some propositions are interesting since their values in the truth table are always the same

Definitions:

- A compound proposition that is always true for all possible truth values of the propositions is called a **tautology**.
- A compound proposition that is always false is called a **contradiction**.
- A proposition that is neither a tautology nor contradiction is called a **contingency**.

Example: $p \land \neg p$ is a contradiction.

р	٦p	p ∧ ¬p
T	F	F
F	Т	F

CS 441 Discrete mathematics for CS

M. Hauskrecht

Equivalence

- We have seen that some of the propositions are equivalent. Their truth values in the truth table are the same.
- Example: $p \rightarrow q$ is equivalent to $\neg q \rightarrow \neg p$ (contrapositive)

р	q	$p \rightarrow q$	$\neg q \rightarrow \neg p$
Т	Т		
Т	F		
F	Т		
F	F		

CS 441 Discrete mathematics for CS

Equivalence

- We have seen that some of the propositions are equivalent. Their truth values in the truth table are the same.
- Example: $p \rightarrow q$ is equivalent to $\neg q \rightarrow \neg p$ (contrapositive)

р	q	$p \rightarrow q$	$\neg q \rightarrow \neg p$
Т	Т	Т	
Т	F	F	
F	Т	Т	
F	F	Т	

• .

CS 441 Discrete mathematics for CS

M. Hauskrecht

Equivalence

- We have seen that some of the propositions are equivalent. Their truth values in the truth table are the same.
- Example: $p \rightarrow q$ is equivalent to $\neg q \rightarrow \neg p$ (contrapositive)

р	q	$p \rightarrow q$	$\neg q \rightarrow \neg p$
Т	T	T	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

• Equivalent statements are important for logical reasoning since they can be substituted and can help us to make a logical argument.

CS 441 Discrete mathematics for CS

Logical equivalence

- <u>Definition</u>: The propositions p and q are called <u>logically</u> equivalent if p ↔ q is a tautology (alternately, if they have the same truth table). The notation p <=> q denotes p and q are logically equivalent.
- Example: $p \rightarrow q$ is equivalent to $\neg q \rightarrow \neg p$ (contrapositive)

CS 441 Discrete mathematics for CS

M. Hauskrecht

Logical equivalence

- <u>Definition</u>: The propositions p and q are called <u>logically</u> equivalent if p

 q is a tautology (alternately, if they have the same truth table). The notation p

 q denotes p and q are logically equivalent.
- $p \rightarrow q$ is equivalent to $\neg q \rightarrow \neg p$ (contrapositive)

р	q	$p \rightarrow q$	$\neg q \rightarrow \neg p$	$(p \to q) \leftrightarrow (\neg q \to \neg p)$
Т	Т	T	Т	T
Т	F	F	F	T
F	Т	Т	Т	T
F	F	Т	Т	Т

CS 441 Discrete mathematics for CS

Logical equivalence

<u>Definition</u>: The propositions p and q are called <u>logically</u> equivalent if p ↔ q is a tautology (alternately, if they have the same truth table). The notation p <=> q denotes p and q are logically equivalent.

Important equivalences:

- DeMorgan's Laws:
- 1) $\neg (p \lor q) \iff \neg p \land \neg q$
- 2) $\neg (p \land q) \iff \neg p \lor \neg q$

Example: Negate "The summer in Mexico is cold and sunny" with DeMorgan's Laws

Solution: ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Equivalence

<u>Definition</u>: The propositions p and q are called <u>logically</u> equivalent if p ↔ q is a tautology (alternately, if they have the same truth table). The notation p <=> q denotes p and q are logically equivalent.

Example of important equivalences

- DeMorgan's Laws:
- 1) $\neg (p \lor q) \iff \neg p \land \neg q$
- 2) $\neg (p \land q) \iff \neg p \lor \neg q$

Example: Negate "The summer in Mexico is cold and sunny" with DeMorgan's Laws

Solution: "The summer in Mexico is not cold or not sunny."

CS 441 Discrete mathematics for CS

Equivalence

Example of important equivalences

- DeMorgan's Laws:
- 1) $\neg (p \lor q) \iff \neg p \land \neg q$
- 2) $\neg (p \land q) \iff \neg p \lor \neg q$

To convince us that two propositions are logically equivalent use the truth table

р	q	¬р	¬q	¬(p ∨ q)	pr ∧ qr
Т	Т	F	F		
Т	F	F	Т		
F	Т	Т	F		
F	F	Т	Т		

CS 441 Discrete mathematics for CS

M. Hauskrecht

Equivalence

Example of important equivalences

- DeMorgan's Laws:
- 1) $\neg (p \lor q) \iff \neg p \land \neg q$
- 2) $\neg (p \land q) \iff \neg p \lor \neg q$

To convince us that two propositions are logically equivalent use the truth table

р	q	¬р	¬q	¬(p ∨ q)	¬p ∧ ¬q
T	Т	F	F	F	
Т	F	F	Т	F	
F	Т	Т	F	F	
F	F	Т	Т	Т	

CS 441 Discrete mathematics for CS

Equivalence

Example of important equivalences

- DeMorgan's Laws:
- 1) $\neg (p \lor q) \iff \neg p \land \neg q$
- 2) $\neg (p \land q) \iff \neg p \lor \neg q$

To convince us that two propositions are logically equivalent use the truth table

р	q	٦p	¬q	¬(p ∨ q)	¬p ∧ ¬q
Т	Т	F	F	F	F
Т	F	F	Т	F	F
F	Т	Т	F	F	F
F	F	Т	Т	Т	Т

CS 441 Discrete mathematics for CS

M. Hauskrecht

Equivalence

Example of important equivalences

- DeMorgan's Laws:
- 1) $\neg (p \lor q) \iff \neg p \land \neg q$
- 2) $\neg (p \land q) \iff \neg p \lor \neg q$

To convince us that two propositions are logically equivalent use the truth table

р	q	٦p	¬q	¬(p ∨ q)	¬p ∧ ¬q
Т	Т	F	F	F	F
Т	F	F	Т	F	F
F	Т	Т	F	F	F
F	F	Т	T	T	T

CS 441 Discrete mathematics for CS

Important logical equivalences

- Identity
 - $p \wedge T \iff p$
 - $p \lor F \iff p$
- Domination
 - $p \lor T \iff T$
 - $p \wedge F \iff F$
- Idempotent
 - $p \lor p \iff p$
 - $p \wedge p \iff p$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Important logical equivalences

- Double negation
 - $\neg (\neg p) \iff p$
- Commutative
 - $p \lor q \iff q \lor p$
 - $p \wedge q \iff q \wedge p$
- Associative
 - $-(p \lor q) \lor r \iff p \lor (q \lor r)$
 - $-(p \wedge q) \wedge r \iff p \wedge (q \wedge r)$

CS 441 Discrete mathematics for CS

Important logical equivalences

- Distributive
 - $p \lor (q \land r) \iff (p \lor q) \land (p \lor r)$
 - $p \wedge (q \vee r) \iff (p \wedge q) \vee (p \wedge r)$
- De Morgan
 - $\neg (p \lor q) \iff \neg p \land \neg q$
 - $(p \land q) \iff \neg p \lor \neg q$
- Other useful equivalences
 - $p \lor \neg p <=> T$
 - $p \land \neg p \stackrel{>}{\sim} F$
 - $p \rightarrow q \iff (\neg p \lor q)$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Using logical equivalences

• Equivalences can be used in proofs. A proposition or its part can be transformed using equivalences and some conclusion can be reached.

Example: Show that $(p \land q) \rightarrow p$ is a tautology.

• Proof: (we must show $(p \land q) \rightarrow p \iff T$)

$$(p \wedge q) \rightarrow p \iff \neg (p \wedge q) \vee p \qquad \qquad \textbf{Useful}$$

CS 441 Discrete mathematics for CS

 Equivalences can be used in proofs. A proposition or its part can be transformed using equivalences and some conclusion can be reached.

Example: Show that $(p \land q) \rightarrow p$ is a tautology.

• Proof: (we must show $(p \land q) \rightarrow p \iff T$)

$$\begin{array}{ccc} (p \wedge q) \rightarrow p & <=> \neg (p \wedge q) \vee p & & Useful \\ <=> \left[\neg p \vee \neg q \right] \vee p & & DeMorgan \end{array}$$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Using logical equivalences

• Equivalences can be used in proofs. A proposition or its part can be transformed using equivalences and some conclusion can be reached.

Example: Show that $(p \land q) \rightarrow p$ is a tautology.

• Proof: (we must show $(p \land q) \rightarrow p \iff T$)

$$\begin{array}{lll} (p \wedge q) \rightarrow p & <=> \neg (p \wedge q) \vee p & & Useful \\ <=> [\neg p \vee \neg q] \vee p & & DeMorgan \\ <=> [\neg q \vee \neg p] \vee p & & Commutative \end{array}$$

CS 441 Discrete mathematics for CS

 Equivalences can be used in proofs. A proposition or its part can be transformed using equivalences and some conclusion can be reached.

Example: Show that $(p \land q) \rightarrow p$ is a tautology.

• Proof: (we must show $(p \land q) \rightarrow p \iff T$)

$$\begin{array}{lll} (p \wedge q) \rightarrow p & <=> \neg (p \wedge q) \vee p & Useful \\ <=> [\neg p \vee \neg q] \vee p & DeMorgan \\ <=> [\neg q \vee \neg p] \vee p & Commutative \\ <=> \neg q \vee [\neg p \vee p] & Associative \end{array}$$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Using logical equivalences

• Equivalences can be used in proofs. A proposition or its part can be transformed using equivalences and some conclusion can be reached.

Example: Show that $(p \land q) \rightarrow p$ is a tautology.

• Proof: (we must show $(p \land q) \rightarrow p \iff T$)

$$\begin{array}{lll} (p \wedge q) \rightarrow p & <=> \neg (p \wedge q) \vee p & Useful \\ <=> [\neg p \vee \neg q] \vee p & DeMorgan \\ <=> [\neg q \vee \neg p] \vee p & Commutative \\ <=> \neg q \vee [\neg p \vee p] & Associative \\ <=> \neg q \vee [T] & Useful \end{array}$$

CS 441 Discrete mathematics for CS

 Equivalences can be used in proofs. A proposition or its part can be transformed using equivalences and some conclusion can be reached.

Example: Show that $(p \land q) \rightarrow p$ is a tautology.

• Proof: (we must show $(p \land q) \rightarrow p \iff T$)

$$\begin{array}{cccc} (p \wedge q) \rightarrow p & <=> \neg (p \wedge q) \vee p & Useful \\ <=> [\neg p \vee \neg q] \vee p & DeMorgan \\ <=> [\neg q \vee \neg p] \vee p & Commutative \\ <=> \neg q \vee [\neg p \vee p] & Associative \\ <=> \neg q \vee [T] & Useful \\ <=> T & Domination \end{array}$$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Using logical equivalences

• Equivalences can be used in proofs. A proposition or its part can be transformed using equivalences and some conclusion can be reached.

Example: Show $(p \land q) \rightarrow p$ is a tautology.

• Alternative proof:

р	q	p ∧ q	(p ∧ q)→p
Т	Т	Т	Т
Т	F	F	Т
F	Т	F	Т
F	F	F	Т

CS 441 Discrete mathematics for CS

- Equivalences can be used in proofs. A proposition or its part can be transformed using equivalences and some conclusion can be reached.
- Example 2: Show $(p \rightarrow q) \iff (\neg q \rightarrow \neg p)$ **Proof:**
- $(p \to q) <=> (\neg q \to \neg p)$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Using logical equivalences

- Equivalences can be used in proofs. A proposition or its part can be transformed using equivalences and some conclusion can be reached.
- **Example 2:** Show $(p \rightarrow q) \iff (\neg q \rightarrow \neg p)$ **Proof:**
- $(p \rightarrow q) \iff (\neg q \rightarrow \neg p)$
- <=> ¬(¬q) ∨ (¬p) <=> ? Useful

CS 441 Discrete mathematics for CS

- Equivalences can be used in proofs. A proposition or its part can be transformed using equivalences and some conclusion can be reached.
- Example 2: Show $(p \rightarrow q) \iff (\neg q \rightarrow \neg p)$ Proof:
- $(p \rightarrow q) \iff (\neg q \rightarrow \neg p)$
- $\langle = \rangle \neg (\neg q) \lor (\neg p)$ Useful
- $\langle = \rangle$ q \vee (\neg p) Double negation
- <=> ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Using logical equivalences

- Equivalences can be used in proofs. A proposition or its part can be transformed using equivalences and some conclusion can be reached.
- Example 2: Show $(p \rightarrow q) \iff (\neg q \rightarrow \neg p)$ Proof:
- $(p \rightarrow q) \iff (\neg q \rightarrow \neg p)$
- $\langle = \rangle \neg (\neg q) \lor (\neg p)$ Useful
- $\langle = \rangle$ q \vee (\neg p) Double negation
- \ll $p \lor q$ Commutative
- <=> ?

CS 441 Discrete mathematics for CS

- Equivalences can be used in proofs. A proposition or its part can be transformed using equivalences and some conclusion can be reached.
- Example 2: Show $(p \rightarrow q) \iff (\neg q \rightarrow \neg p)$ Proof:
- $(p \rightarrow q) \iff (\neg q \rightarrow \neg p)$
- $\ll \neg (\neg q) \lor (\neg p)$ Useful
- \iff $q \lor (\neg p)$ Double negation
- \ll Commutative
- $\langle = \rangle$ p \rightarrow q Useful

End of proof

CS 441 Discrete mathematics for CS