Course administration

- **Homework 9**:
 - Due on Friday, March 31, 2006
- **Midterm exam 2**
 - Tentative: Friday March 31, 2006
 - Covers only the material after midterm 1
 - Integers (Primes, Division, Congruencies)
 - Sequences and Summations
 - Inductive proofs and Recursion
 - Counting

Course web page:
http://www.cs.pitt.edu/~milos/courses/cs441/
Permutations

A permutation of a set of distinct objects is an ordered arrangement of the objects. Since the objects are distinct, they cannot be selected more than once. Furthermore, the order of the arrangement matters.

Example:
- Assume we have a set S with n elements. $S = \{a, b, c\}$.
- Permutations of S:
 - $a \ b \ c$ $a \ c \ b$ $b \ a \ c$ $b \ c \ a$ $c \ a \ b$ $c \ b \ a$
- k-permutations of S:
 - $a b \ a c \ b a \ b c \ c a \ c b$

Number of permutations

- Assume we have a set S with n elements. $S = \{a_1, a_2, \ldots, a_n\}$.
- Question: How many different permutations are there?

$$P(n,n) = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 1 = n!$$

$$P(n,k) = \frac{n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot (n-k+1)}{(n-k)!} = \frac{n!}{(n-k)!}$$
Combinations

A \textit{k-combination of elements of a set} is an \textit{unordered} selection of \(k \) elements from the set. Thus, a \(k \)-combination is simply a subset of the set with \(k \) elements.

Example:
- 2-combinations of the set \{a,b,c\}
 - a b
 - a c
 - b c
 - a b covers 2-permutations: a b and b a

\textbf{Theorem:} The number of \(k \)-combinations of a set with \(n \) distinct elements, where \(n \) is a positive integer and \(k \) is an integer with \(0 \leq k \leq n \) is

\[
C(n, k) = \frac{n!}{(n - k)!k!}
\]
Combinations

Example:
- We need to create a team of 5 players for the competition out of 10 team members. How many different teams is it possible to create?

Answer:
- When creating a team we do not care about the order in which players were picked. It is important that the player is in. Because of that we need to consider unordered sets of combinations.
- \(C(10,5) = \frac{10!}{(10-5)!5!} = \frac{(10.9.8.7.6)}{(5 4 3 2 1)} = 2.3.2.1 = 6.42 = \boxed{252} \)

Binomial coefficients

- The number of k-combinations out of n elements \(C(n,k) \) is often denoted as:
 \[\binom{n}{k} \]
 and reads n choose k. The number is also called a binomial coefficient.
- Binomial coefficients occur as coefficients in the expansion of powers of binomial expressions such as
 \[(a + b)^n \]
- **Definition:** a binomial expression is the sum of two terms \((a+b)\).
Binomial coefficients

Example:
- Expansion of the binomial expression \((a+b)^3\).

\[
(a + b)^3 = \sum_{i=0}^{3} \binom{3}{i} a^{3-i} b^i
\]

\[
= \binom{3}{0} a^3 + \binom{3}{1} a^2 b + \binom{3}{2} ab^2 + \binom{3}{3} b^3
\]

Binomial coefficients

Binomial theorem: Let \(a\) and \(b\) be variables and \(n\) be a nonnegative integer. Then:

\[
(a+b)^n = \sum_{i=0}^{n} \binom{n}{i} a^{n-i} b^i
\]

\[
= \binom{n}{0} a^n + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^2 + \ldots + \binom{n}{n-1} a b^{n-1} + \binom{n}{n} b^n
\]
Binomial coefficients

Binomial theorem: Let a and b be variables and n be a nonnegative integer. Then:

\[(a+b)^n = \sum_{i=0}^{n} \binom{n}{i} a^{n-i} b^i\]

- Proof. The products after the expansion include terms \(a^{(n-i)} b^i\) for all \(i=0,1, \ldots n\). To obtain the number of such coefficients note that we have to choose exactly \((n-i)\) a(s) out of the product of \(n\) binomial expressions. The number of ways we pull a(s) out of the product is given as:

\[\binom{n}{n-i} = \binom{n}{i}\]

- Thus the theorem holds.

Corrolary: Let \(n\) be a nonnegative integer. Then:

\[\sum_{i=0}^{n} \binom{n}{i} = 2^n\]
Binomial coefficients

Corollary: Let \(n \) be a nonnegative integer. Then:

\[
\sum_{i=0}^{n} \binom{n}{i} = 2^n
\]

Proof:

- Assume a set with \(n \) elements:
- \(C(n,0) = \) number of subsets of size 0.
- \(C(n,i) = \) the number of subsets of size \(i \).
- \(C(n,n) = \) the number of subsets of size \(n \).
- The sum of these numbers must give the number of all subsets of the set \(n \).
- We know it is \(2^n \) so the result follows.

Binomial coefficients

Corollary:

- Let \(n \) be a nonnegative integer. Then:

\[
\sum_{i=0}^{n} (-1)^i \binom{n}{i} = 0
\]
Binomial coefficients

Corrolary:
• Let n be a nonnegative integer. Then:

$$\sum_{i=0}^{n} (-1)^i \binom{n}{i} = 0$$

Proof:

$$\sum_{i=0}^{n} \binom{n}{i} (-1)^i = \sum_{i=0}^{n} \binom{n}{i} (-1)^i (1^{n-i}) = ((-1) + 1)^n = 0^n = 0$$

Example:
• Show that

$$\sum_{i=0}^{n} \binom{n}{i} 2^i = 3^n$$

• Answer:
Binomial coefficients

Example:
• Show that $\sum_{i=0}^{n} \binom{n}{i} 2^i = 3^n$

• Answer:
$$\sum_{i=0}^{n} \binom{n}{i} 2^i = \sum_{i=0}^{n} \binom{n}{i} (2)^{i} 1^{n-i} = (2+1)^n = 3^n$$

Question: We have binomial coefficients for expressions with the power n. Are binomial coefficients for powers of $n-1$ or $n+1$ in any way related to coefficients for n?
• The answer is yes.

Theorem:
• Let n and k be two positive integers with $k < n$. Then it holds:
$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$
Pascal triangle

Drawing the binomial coefficients for different powers in increasing order gives a Pascal triangle:

<table>
<thead>
<tr>
<th>powers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Powers | 1 | 2 | 3 | 4 |
Pascal triangle

Drawing the binomial coefficients for different powers in increasing order gives a **Pascal triangle**:

<table>
<thead>
<tr>
<th>powers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>1 1</td>
</tr>
<tr>
<td>1 2 1</td>
</tr>
<tr>
<td>1 3 3 1</td>
</tr>
<tr>
<td>1 4 6 4 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
</tr>
</tbody>
</table>
Pascal triangle

Drawing the binomial coefficients for different powers in increasing order gives a Pascal triangle:

\[
\begin{array}{cccccccc}
\text{powers} & & & & & & & \\
1 & & & & & & & \\
1 & 1 & & & & & & \\
1 & 2 & 1 & & & & & \\
1 & 3 & 3 & 1 & & & & \\
1 & 4 & 6 & 4 & 1 & & & \\
1 & 5 & 10 & 10 & 5 & 1 & & \\
1 & 6 & 15 & 20 & 15 & 6 & 1 & \\
\end{array}
\]
Permutations with repetitions

- Assume we can pick the object from a set multiple times: that is, an object can be on the position 1, 2, 3, etc.

Example:
- 26 letters of alphabet. How many different strings of length k are there?

Answer:
- 26^k
Permutations with repetitions

• Assume we can pick the object from a set multiple times: that is, an object can be on the position 1, 2, 3, etc.

Example:
• 26 letters of alphabet. How many different strings of length k are there?
Answer:
• \(26^k\)

Theorem: The number of k-permutations of a set of n objects with repetition is \(n^k\).

Combinations with repetitions

Example:
• Pick four pieces of a fruit from three bowls with apples, pears and oranges. How many possible combinations are possible? List/count all of them?
Answer:
Combinations with repetitions

Example:
• Pick four pieces of a fruit from three bowls with apples, pears and oranges. How many possible combinations are possible? List /count all of them?

Answer:
• **Star and bar approach**
 • Apples Pears Oranges
 • 3 bowls separated by | |
 • Choice 2 apples and 2 pears represented as: ** | **
 • Choice of 1 apple and 3 oranges: * | ***

Count:
How many different ways of arranging (3-1)=2 bars and 4 stars are there?
• Total number of positions: 2+4=6
Combinations with repetitions

- **Theorem**: The number of ways to pick n elements from k different groups is:

$$\binom{n - 1 + k}{n}$$

- (n+k-1) positions
- n- stars
- **Count**: the number of ways to select the positions of 4 stars.