CS 441 Discrete Mathematics for CS Lecture 24

Counting

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 441 Discrete mathematics for CS

M. Hauskrecht

Course administration

- Homework 8:
 - Due on Friday, March 24, 2006
- Midterm exam 2
 - Tentative: Friday March 31, 2006
 - Covers only the material after midterm 1
 - Integers (Primes, Division, Congruencies)
 - Sequences and Summations
 - Inductive proofs and Recursion
 - Counting

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs441/

CS 441 Discrete mathematics for CS

Pigeonhole principle

- Assume you have a set of objects and a set of bins used to store objects.
- The **pigeonhole principle** states that if there are more objects than bins then there is at least one bin with more than one object.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Pigeonhole principle

- Assume you have a set of objects and a set of bins used to store objects.
- The **pigeonhole principle** states that if there are more objects than bins then there is at least one bin with more than one object.

CS 441 Discrete mathematics for CS

Pigeonhole principle

• Theorem. If there are k+1 objects and k bins. Then there is at least one bin with two or more objects.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Pigeonhole principle

Example:

- Assume 367 people. Are there (any) two people who has the same birthday?
- How many days are in the year? 365.
- Then there must be at least two people with the same birthday.

CS 441 Discrete mathematics for CS

- We can often say more about the number of objects.
- Say we have 5 bins and 12 objects. What is it we can say about the bins and the number of elements they hold?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Generalized pigeonhole principle

<u>Theorem.</u> If N objects are placed into k bins then there is at least one bin containing at least $\lceil N/k \rceil$ objects.

Example. Assume 100 people. Can you tell something about the number of people born in the same month.

CS 441 Discrete mathematics for CS

Theorem. If N objects are placed into k bins then there is at least one bin containing at least $\lceil N/k \rceil$ objects.

Example. Assume 100 people. Can you tell something about the number of people born in the same month.

• Yes. There exists a month in which at least $\lceil 100/12 \rceil = \lceil 8.3 \rceil = 9$ people were born.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Generalized pigeonhole principle

Example.

• Show that among any set of 5 integers, there are 2 with the same remainder when divided by 4.

Answer:

• 7

CS 441 Discrete mathematics for CS

Example.

• Show that among any set of 5 integers, there are 2 with the same remainder when divided by 4.

Answer:

- Let there be 4 boxes, one for each remainder when divided by 4.
- After 5 integers are sorted into the boxes, there are \[5/4 \]=2 in one box.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Generalized pigeonhole principle

Example:

• How many students, each of whom comes from one of the 50 states, must be enrolled in a university to guaranteed that there are at least 100 who come from the same state?

Answer:

• ?

Example:

• How many students, each of whom comes from one of the 50 states, must be enrolled in a university to guaranteed that there are at least 100 who come from the same state?

Answer:

- Let there by 50 boxes, one per state.
- We want to find the minimal N so that $\lceil N/50 \rceil = 100$.
- Letting N=5000 is too much, since the remainder is 0.
- We want a remainder of 1 so that let N=50*99+1=4951.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Permutations

• <u>A permutation</u> of a set of <u>distinct</u> objects is an <u>ordered</u> arrangement of the objects. Since the objects are distinct, they cannot be selected more than once. Furthermore, the order of the arrangement matters.

Example:

- Assume we have a set S with n elements. $S=\{a,b,c\}$.
- Permutations of S:
- 9

CS 441 Discrete mathematics for CS

Permutations

<u>A permutation</u> of a set of <u>distinct</u> objects is an <u>ordered</u> arrangement of the objects. Since the objects are distinct, they cannot be selected more than once. Furthermore, the order of the arrangement matters.

Example:

- Assume we have a set S with n elements. $S=\{a,b,c\}$.
- Permutations of S:
- · abc acb bac bca cab cba

CS 441 Discrete mathematics for CS

M. Hauskrecht

Number of permutations

- Assume we have a set S with n elements. $S=\{a_1 a_2 ... a_n\}$.
- Question: How many different permutations are there?
- In how many different ways we can choose the first element of the permutation?

CS 441 Discrete mathematics for CS

Number of permutations

- Assume we have a set S with n elements. $S = \{a_1 a_2 \dots a_n\}$.
- Question: How many different permutations are there?
- In how many different ways we can choose the first element of the permutation?
 n (either a₁ or a₂ ... or a_n)
- Assume we picked a₂.
- In how many different ways we can choose the remaining elements?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Number of permutations

- Assume we have a set S with n elements. $S=\{a_1 a_2 ... a_n\}$.
- Question: How many different permutations are there?
- In how many different ways we can choose the first element of the permutation?
 n (either a₁ or a₂ ... or a_n)
- Assume we picked a₂.
- In how many different ways we can choose the remaining elements? **n-1** (either a_1 or a_3 ... or a_n but not a_2)
- Assume we picked a_{i.}
- In how many different ways we can choose the remaining elements?

CS 441 Discrete mathematics for CS

Number of permutations

- Assume we have a set S with n elements. $S = \{a_1 a_2 \dots a_n\}$.
- Question: How many different permutations are there?
- In how many different ways we can choose the first element of the permutation?
 n (either a₁ or a₂ ... or a_n)
- Assume we picked a₂.
- In how many different ways we can choose the remaining elements?
 n-1 (either a₁ or a₃ ... or a_n but not a₂)
- Assume we picked a_i
- In how many different ways we can choose the remaining elements? n-2 (either a₁ or a₃ ... or a_n but not a₂ and not a_j)
 P(n,n) = ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Number of permutations

- Assume we have a set S with n elements. $S=\{a_1 a_2 ... a_n\}$.
- Question: How many different permutations are there?
- In how many different ways we can choose the first element of the permutation?
 n (either a₁ or a₂ ... or a_n)
- Assume we picked a₂.
- In how many different ways we can choose the remaining elements? **n-1** (either a_1 or a_3 ... or a_n but not a_2)
- Assume we picked a_{i.}
- In how many different ways we can choose the remaining elements? n-2 (either a₁ or a₃ ... or a_n but not a₂ and not a_j)
 P(n,n) = n.(n-1)(n-2)...1 = n!

CS 441 Discrete mathematics for CS

Permutations

Example 1.

- How many permutations of letters {a,b,c} are there?
- Number of permutations is:

$$P(n,n) = P(3,3) = ?$$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Permutations

Example 1.

- How many permutations of letters $\{a,b,c\}$ are there?
- Number of permutations is:

$$P(n,n) = P(3,3) = 3! = 6$$

• Verify:

abc acb bac bca cab cba

CS 441 Discrete mathematics for CS

Permutations

Example 2

• How many permutations of letters A B C D E F G H contain a substring ABC.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Permutations

Example 2

• How many permutations of letters A B C D E F G H contain a substring ABC.

Idea: consider ABC as one element and D,E,F,G,H as other 5 elements for the total of 6 elements.

Then we need to count the number of permutation of these elements.

6! = 720

CS 441 Discrete mathematics for CS

- **k-permutation** is an ordered arrangement of k elements of a set.
- The number of *k*-permutations of a set with *n* distinct elements is:

$$P(n,k) = n(n-1)(n-2)...(n-k+1)=$$
?

CS 441 Discrete mathematics for CS

M. Hauskrecht

k-permutations

- **k-permutation** is an ordered arrangement of k elements of a set.
- The number of *k*-permutations of a set with *n* distinct elements is:

$$P(n,k) = n(n-1)(n-2)...(n-k+1) = n!/(n-k)!$$

CS 441 Discrete mathematics for CS

- **k-permutation** is an ordered arrangement of k elements of a set.
- The number of *k*-permutations of a set with *n* distinct elements is:

$$P(n,k) = n(n-1)(n-2)...(n-k+1) = n!/(n-k)!$$

Explanation:

- Assume we have a set S with n elements. $S=\{a_1 a_2 ... a_n\}$.
- The 1st element of the *k*-permutation may be any of the *n* elements in the set.
- The 2nd element of the *k*-permutation may be any of the *n-1* remaining elements of the set.
- And so on. For last element of the k-permutation, there are n-k+1 elements remaining to choose from.

CS 441 Discrete mathematics for CS

M. Hauskrecht

k-permutations

Example:

The 2-permutations of set $\{a,b,c\}$ are:

CS 441 Discrete mathematics for CS

Example:

The 2-permutations of set $\{a,b,c\}$ are:

ab, ac, ba, bc, ca, cb.

The number of 2-permutations of this 3-element set is

CS 441 Discrete mathematics for CS

M. Hauskrecht

k-permutations

Example:

The 2-permutations of set $\{a,b,c\}$ are:

The number of 2-permutations of this 3-element set is

$$P(n,k) = P(3,2) = 3 (3-2+1) = 6.$$

CS 441 Discrete mathematics for CS

Example:

Suppose that there are eight runners in a race. The winner receives a gold medal, the second-place finisher receives a silver medal, and the third-place finisher receives a bronze medal. How many different ways are there to award these medals, if all possible outcomes of the race can occur?

Answer: ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

k-permutations

Example:

Suppose that there are eight runners in a race. The winner receives a gold medal, the second-place finisher receives a silver medal, and the third-place finisher receives a bronze medal. How many different ways are there to award these medals, if all possible outcomes of the race can occur?

Answer:

note that the runners are <u>distinct</u> and that the medals are <u>ordered</u>. The solution is P(8,3) = 8 * 7 * 6 = 8! / (8-3)! = 336.

CS 441 Discrete mathematics for CS