CS 441 Discrete Mathematics for CS Lecture 21

Mathematical induction & Recursion

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 441 Discrete mathematics for CS

M. Hauskrecht

Course administration

- Homework 7 is out
 - It is due on March 17, 2006

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs441/

CS 441 Discrete mathematics for CS

• Used to prove statements of the form $\forall x \ P(x)$ where $x \in Z^+$

Mathematical induction proofs consists of two steps:

- 1) **Basis:** The proposition P(1) is true.
- 2) **Inductive Step:** The implication $P(n) \rightarrow P(n+1)$, is true for all positive n.
- Therefore we conclude $\forall x P(x)$.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Mathematical induction

Example: Prove the sum of first n odd integers is n^2 .

i.e.
$$1 + 3 + 5 + 7 + ... + (2n - 1) = n^2$$
 for all positive integers.

Proof:

• What is P(n)? P(n): $1+3+5+7+...+(2n-1)=n^2$

CS 441 Discrete mathematics for CS

Example: Prove the sum of first n odd integers is n^2 .

i.e. $1 + 3 + 5 + 7 + ... + (2n - 1) = n^2$ for all positive integers.

Proof:

• What is P(n)? P(n): $1+3+5+7+...+(2n-1)=n^2$

Basic Step

CS 441 Discrete mathematics for CS

M. Hauskrecht

Mathematical induction

Example: Prove the sum of first n odd integers is n^2 .

i.e. $1 + 3 + 5 + 7 + ... + (2n - 1) = n^2$ for all positive integers.

Proof:

• What is P(n)? P(n): $1+3+5+7+...+(2n-1)=n^2$

Basis Step Show P(1) is true

• Trivial: $1 = 1^2$

CS 441 Discrete mathematics for CS

Example: Prove the sum of first n odd integers is n^2 .

i.e.
$$1 + 3 + 5 + 7 + ... + (2n - 1) = n^2$$
 for all positive integers.

Proof:

• What is P(n)? P(n): $1+3+5+7+...+(2n-1)=n^2$

Basis Step Show P(1) is true

• Trivial: $1 = 1^2$

Inductive Step Show if P(n) is true then P(n+1) is true for all n.

•

CS 441 Discrete mathematics for CS

M. Hauskrecht

Mathematical induction

Example: Prove the sum of first n odd integers is n^2 .

i.e.
$$1 + 3 + 5 + 7 + ... + (2n - 1) = n^2$$
 for all positive integers.

Proof:

• What is P(n)? P(n): $1+3+5+7+...+(2n-1)=n^2$

Basis Step Show P(1) is true

• Trivial: $1 = 1^2$

Inductive Step Show if P(n) is true then P(n+1) is true for all n.

- Suppose P(n) be true, that is $1 + 3 + 5 + 7 + ... + (2n 1) = n^2$
- Show P(n+1): $1 + 3 + 5 + 7 + ... + (2n 1) + (2n + 1) = (n+1)^2$ follows:

•
$$\underbrace{1+3+5+7+...+(2n-1)}_{n^2} + (2n+1) = (n+1)^2$$

CS 441 Discrete mathematics for CS

Example: Prove n^3 - n is divisible by 3 for all positive integers.

• P(n): n^3 - n is divisible by 3

Basis Step: P(1): $1^3 - 1 = 0$ is divisible by 3 (obvious)

CS 441 Discrete mathematics for CS

M. Hauskrecht

Mathematical induction

Example: Prove n^3 - n is divisible by 3 for all positive integers.

• P(n): n^3 - n is divisible by 3

Basis Step: P(1): $1^3 - 1 = 0$ is divisible by 3 (obvious) **Inductive Step:** If P(n) is true then P(n+1) is true for each positive integer.

- Suppose P(n): n^3 n is divisible by 3 is true.
- Show P(n+1): $(n+1)^3$ (n+1) is divisible by 3.

CS 441 Discrete mathematics for CS

Example: Prove $n^3 - n$ is divisible by 3 for all positive integers.

• P(n): n^3 - n is divisible by 3

Basis Step: P(1): $1^3 - 1 = 0$ is divisible by 3 (obvious) **Inductive Step:** If P(n) is true then P(n+1) is true for each positive integer.

- Suppose P(n): n^3 n is divisible by 3 is true.
- Show P(n+1): $(n+1)^3$ (n+1) is divisible by 3.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Strong induction

- The regular induction:
 - uses the basic step P(1) and
 - inductive step $P(n-1) \rightarrow P(n)$
- Strong induction uses:
 - Uses the basis step P(1) and
 - inductive step P(1) and P(2) ... $P(n-1) \rightarrow P(n)$

Example: Show that a positive integer greater than 1 can be written as a product of primes.

CS 441 Discrete mathematics for CS

Strong induction

Example: Show that a positive integer greater than 1 can be written as a product of primes.

Assume P(n): an integer n can be written as a product of primes.

Basis step: P(2) is true

Inductive step: Assume true for P(2),P(3), ... P(n)

Show that P(n+1) is true as well.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Strong induction

Example: Show that a positive integer greater than 1 can be written as a product of primes.

Assume P(n): an integer n can be written as a product of primes.

Basis step: P(2) is true

Inductive step: Assume true for P(2),P(3), ... P(n)

Show that P(n+1) is true as well.

2 Cases:

• If n+1 is a prime then P(n+1) is trivially true

CS 441 Discrete mathematics for CS

Strong induction

Example: Show that a positive integer greater than 1 can be written as a product of primes.

Assume P(n): an integer n can be written as a product of primes.

Basis step: P(2) is true

Inductive step: Assume true for P(2),P(3), ... P(n)

Show that P(n+1) is true as well.

2 Cases:

- If n+1 is a prime then P(n+1) is trivially true
- If n+1 is a composite then it can be written as a product of two integers (n+1) = a*b such that 1 < a, b < n+1

CS 441 Discrete mathematics for CS

M. Hauskrecht

Strong induction

Example: Show that a positive integer greater than 1 can be written as a product of primes.

Assume P(n): an integer n can be written as a product of primes.

Basis step: P(2) is true

Inductive step: Assume true for $P(2),P(3), \dots P(n)$

Show that P(n+1) is true as well.

2 Cases:

- If n+1 is a prime then P(n+1) is trivially true
- If n+1 is a composite then it can be written as a product of two integers (n+1) = a*b such that 1 < a, b < n+1
- From the assumption P(a) and P(b) holds.
- Thus, n+1 can be written as a product of primes
- End of proof

CS 441 Discrete mathematics for CS M. Hauskrecht

• Sometimes it is difficult to define an object explicitly, however it may be easy to define the object in terms of itself. This process is called **recursion**.

Examples of recursive definitions:

- Recursive definition of a geometric sequence:
 - $X_n = 3^n$
 - $x_0 = 1$; $x_n = 3x_{n-1}$
- Algorithm for computing the gcd:
 - gcd(79, 35) = gcd(35, 9)

CS 441 Discrete mathematics for CS

M. Hauskrecht

Recursively Defined Functions

To define a function on the set of nonnegative integers

- 1. Specify the value of the function at 0
- 2. Give a rule for finding the function's value at n+1 in terms of the function's value at integers i ≤ n.
- Such a definition is called recursive or inductive.

CS 441 Discrete mathematics for CS

Recursively defined functions

Example: Assume a recursive function on positive integers:

- f(0) = 3
- f(n+1) = 2f(n) + 3
- What is the value of f(0)?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Recursively defined functions

Example: Assume a recursive function on positive integers:

- f(0) = 3
- f(n+1) = 2f(n) + 3
- What is the value of f(0)? 3
- f(1) = ?

CS 441 Discrete mathematics for CS

Recursively defined functions

Example: Assume a recursive function on positive integers:

- f(0) = 3
- f(n+1) = 2f(n) + 3
- What is the value of f(0)? 3
- f(1) = 2f(0) + 3 = 2(3) + 3 = 6 + 3 = 9
- f(2) = ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Recursively defined functions

Example: Assume a recursive function on positive integers:

- f(0) = 3
- f(n+1) = 2f(n) + 3
- What is the value of f(0)? 3
- f(1) = 2f(0) + 3 = 2(3) + 3 = 6 + 3 = 9
- f(2) = f(1+1) = 2f(1) + 3 = 2(9) + 3 = 18 + 3 = 21
- f(3) = ?

CS 441 Discrete mathematics for CS

Recursively defined functions

Example: Assume a recursive function on positive integers:

- f(0) = 3
- f(n+1) = 2f(n) + 3
- What is the value of f(0)? 3
- f(1) = 2f(0) + 3 = 2(3) + 3 = 6 + 3 = 9
- f(2) = f(1+1) = 2f(1) + 3 = 2(9) + 3 = 18 + 3 = 21
- f(3) = f(2+1) = 2f(2) + 3 = 2(21) = 42 + 3 = 45
- f(4) = ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Recursively defined functions

Example: Assume a recursive function on positive integers:

- f(0) = 3
- f(n+1) = 2f(n) + 3
- What is the value of f(0)? 3
- f(1) = 2f(0) + 3 = 2(3) + 3 = 6 + 3 = 9
- f(2) = f(1+1) = 2f(1) + 3 = 2(9) + 3 = 18 + 3 = 21
- f(3) = f(2+1) = 2f(2) + 3 = 2(21) = 42 + 3 = 45
- f(4) = f(3+1) = 2f(3) + 3 = 2(45) + 3 = 90 + 3 = 93

CS 441 Discrete mathematics for CS

• Example

Define the function:

$$f(n) = 2n + 1$$
 $n = 0, 1, 2, ...$ recursively.

• f(0) = ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Recursive defined functions

• Example

Define the function:

$$f(n) = 2n + 1$$
 $n = 0, 1, 2, ...$ recursively.

- f(0) = 1
- f(n+1) = ?

CS 441 Discrete mathematics for CS

• Example:

Define the function:

$$f(n) = 2n + 1$$
 $n = 0, 1, 2, ...$ recursively.

- f(0) = 1
- f(n+1) = f(n) + 2

CS 441 Discrete mathematics for CS

M. Hauskrecht

Recursive definitions

• Example:

Define the sequence:

$$a_n = n^2$$
 for $n = 1,2,3, ...$ recursively.

• $a_1 = ?$

CS 441 Discrete mathematics for CS

• Example:

Define the sequence:

$$a_n = n^2$$
 for $n = 1,2,3, ...$ recursively.

- $a_1 = 1$ $a_{n+1} = ?$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Recursive definitions

• Example:

Define the sequence:

$$a_n = n^2$$
 for $n = 1,2,3, ...$ recursively.

- $a_1 = 1$
- $a_{n+1} = a_n^2 + (2n+1), \quad n \ge 1$

CS 441 Discrete mathematics for CS

• Example:

Define a recursive definition of the sum of the first n positive integers:

$$F(n) = \sum_{i=1}^{n} i$$

• F(1) = ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Recursive definitions

• Example:

Define a recursive definition of the sum of the first n positive integers:

$$F(n) = \sum_{i=1}^{n} i$$

- F(1) = 1
- F(n+1) = ?

CS 441 Discrete mathematics for CS

• Example:

Define a recursive definition of the sum of the first n positive integers:

$$F(n) = \sum_{i=1}^{n} i$$

- F(1) = 1
- $F(n+1) = F(n) + (n+1), n \ge 1$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Recursive definitions

Some important functions or sequences in mathematics are defined recursively

Factorials

- n! = 1 if n=1
- n! = n.(n-1)! if $n \ge 1$

Fibonacci numbers:

- F(0)=0, F(1)=1 and
- F(n) = F(n-1) + F(n-2) for n=2,3,...

CS 441 Discrete mathematics for CS

Greatest common divisor

$$gcd(a,b) = b$$
 if $b \mid a$
= $gcd(b, a \mod b)$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Recursive definitions

Data structures

Example: Rooted tree

- A basis step:
 - a single node (vertex)is a rooted tree
- Recursive step:
 - Assume T1, T2, ... Tk are rooted trees, then the graph with a root r connected to T1, T2, ... Tk is a rooted tree

CS 441 Discrete mathematics for CS

Data structures

Example: Rooted tree

- A basis step:
 - a single node (vertex)is a rooted tree
- Recursive step:
 - Assume T1, T2, ... Tk are rooted trees, then the graph with a root r connected to T1, T2, ... Tk is a rooted tree

CS 441 Discrete mathematics for CS

M. Hauskrecht

Recursive definitions

- Assume the alphabet Σ
 - Example: $\Sigma = \{a,b,c,d\}$
- A set of all strings containing symbols in Σ : Σ^*
 - Example: Σ * = {"",a,aa,aaa,aaa..., ab, ...b,bb, bbb, ...}

Recursive definition of Σ *

- Basis step:
 - empty string λ ∈ Σ *
- Recursive step:
 - If w∈Σ * and x ∈Σ then wx ∈Σ *

CS 441 Discrete mathematics for CS