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Mathematical induction

CS 441 Discrete mathematics for CS M. Hauskrecht

Course administration

• Homework 6 is out
Due on Friday, March 3, 2006 or earlier (TA office)

• Homework 7 is out, due on March 17, 2006

Course web page:
http://www.cs.pitt.edu/~milos/courses/cs441/
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Proofs
Basic proof methods: 
• Direct, Indirect, Contradiction, By Cases, Equivalences
Proof of quantified statements:
• There exists x with some property P(x).

– It is sufficient to find one element for which the property 
holds.

• For all x some property P(x) holds.
– Proofs of ‘For all x some property P(x) holds’ must cover all 

x and can be harder.
• Mathematical induction is the technique that can be applied to 

prove the universal statements for sets of positive integers or 
their associated sequences. 
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Mathematical induction
• Used to prove statements of the form ∀x P(x) where x ∈ Z+

Mathematical induction proofs consists of two steps:
1) Basis: The proposition P(1) is true.
2) Inductive Step: The implication 

P(n) → P(n+1), is true for all positive n.
• Therefore  we conclude ∀x P(x).

• Based on the well-ordering property: Every nonempty set of 
nonnegative integers has a least element.
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Mathematical induction
Example: Prove  the sum of first n odd integers is n2 .

i.e. 1 + 3 + 5 + 7 + ... + (2n - 1) = n2 for all positive integers.
Proof:
• What is P(n)?       P(n):   1 + 3 + 5 + 7 + ... + (2n - 1) = n2
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Mathematical induction
Example: Prove  the sum of first n odd integers is n2 .

i.e. 1 + 3 + 5 + 7 + ... + (2n - 1) = n2 for all positive integers.
Proof:
• What is P(n)?       P(n):   1 + 3 + 5 + 7 + ... + (2n - 1) = n2

Basic Step
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Mathematical induction
Example: Prove  the sum of first n odd integers is n2 .

i.e. 1 + 3 + 5 + 7 + ... + (2n - 1) = n2 for all positive integers.
Proof:
• What is P(n)?       P(n):   1 + 3 + 5 + 7 + ... + (2n - 1) = n2

Basis Step Show P(1) is true
• Trivial: 1    =     12
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Mathematical induction
Example: Prove  the sum of first n odd integers is n2 .

i.e. 1 + 3 + 5 + 7 + ... + (2n - 1) = n2 for all positive integers.
Proof:
• What is P(n)?       P(n):   1 + 3 + 5 + 7 + ... + (2n - 1) = n2

Basis Step Show P(1) is true
• Trivial: 1    =     12

Inductive Step Show if P(n) is true then P(n+1) is true for all n.
•
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Mathematical induction
Example: Prove  the sum of first n odd integers is n2 .

i.e. 1 + 3 + 5 + 7 + ... + (2n - 1) = n2 for all positive integers.
Proof:
• What is P(n)?       P(n):   1 + 3 + 5 + 7 + ... + (2n - 1) = n2

Basis Step Show P(1) is true
• Trivial: 1    =     12

Inductive Step Show if P(n) is true then P(n+1) is true for all n.
• Suppose P(n) be true, that is  1 + 3 + 5 + 7 + ... + (2n - 1) = n2

• Show P(n+1):  1 + 3 + 5 + 7 + ... + (2n - 1) + (2n + 1) =(n+1) 2
follows:

• 1 + 3 + 5 + 7 + ... + (2n - 1) + (2n + 1)  =
n2 +                 (2n+1)    =  (n+1)2
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Correctness of the mathematical induction
Suppose P(1) is true and P(n)  → P(n+1) is true for all positive 

integers n.  Want to show ∀x P(x).
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Correctness of the mathematical induction
Suppose P(1) is true and P(n)  → P(n+1) is true for all positive 

integers n.  Want to show ∀x P(x).
Assume there is at least one n such that P(n) is false.  Let S be the 

set of nonnegative integers where P(n) is false.  Thus S ≠ ∅.  
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Correctness of the mathematical induction
Suppose P(1) is true and P(n)  → P(n+1) is true for all positive 

integers n.  Want to show ∀x P(x).
Assume there is at least one n such that P(n) is false.  Let S be the 

set of nonnegative integers where P(n) is false.  Thus S ≠ ∅.  
Well-Ordering Property: Every nonempty set of nonnegative 

integers has a least element.



7

CS 441 Discrete mathematics for CS M. Hauskrecht

Correctness of the mathematical induction
Suppose P(1) is true and P(n)  → P(n+1) is true for all positive 

integers n.  Want to show ∀x P(x).
Assume there is at least one n such that P(n) is false.  Let S be the 

set of nonnegative integers where P(n) is false.  Thus S ≠ ∅.  
Well-Ordering Property: Every nonempty set of nonnegative 

integers has a least element.
By the Well-Ordering Property, S has a least member, say k.  k > 

1, since P(1) is true.  This implies  k - 1 > 0 and  P(k-1) is true 
(since remember k is the smallest integer where P(k) is false).
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Correctness of the mathematical induction
Suppose P(1) is true and P(n)  → P(n+1) is true for all positive 

integers n.  Want to show ∀x P(x).
Assume there is at least one n such that P(n) is false.  Let S be the 

set of nonnegative integers where P(n) is false.  Thus S ≠ ∅.  
Well-Ordering Property: Every nonempty set of nonnegative 

integers has a least element.
By the Well-Ordering Property, S has a least member, say k.  k > 

1, since P(1) is true.  This implies  k - 1 > 0 and  P(k-1) is true 
(since remember k is the smallest integer where P(k) is false).

Now: P(k-1) → P(k) is true
thus, P(k) must be true (a contradiction).

• Therefore  ∀x P(x).
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Mathematical induction
Example: Prove   n  <   2n for all positive integers n.
• P(n): n  <   2n

Basis Step: 1  <   21 (obvious)
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Mathematical induction
Example: Prove   n  <   2n for all positive integers n.
• P(n): n  <   2n

Basis Step: 1  <   21 (obvious)
Inductive Step: If P(n) is true then P(n+1) is true for each n.
• Suppose P(n):   n  <   2 n is true
• Show  P(n+1):    n+1   <   2 n+1 is true.
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Mathematical induction
Example: Prove   n  <   2n for all positive integers n.
• P(n): n  <   2n

Basis Step: 1  <   21 (obvious)
Inductive Step: If P(n) is true then P(n+1) is true for each n.
• Suppose P(n):   n  <   2 n is true
• Show  P(n+1):    n+1   <   2 n+1 is true.

n  +  1   <    2 n +   1
<     2 n +   2 n

=    2 n ( 1  +  1 )
=    2n (2)
=    2 n+1
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Mathematical induction
Example:   Prove n3 - n  is divisible by 3 for all positive integers.
• P(n):    n3 - n  is divisible by 3

Basis Step: P(1):     13 - 1  =   0   is divisible by 3   (obvious)
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Mathematical induction
Example:   Prove n3 - n  is divisible by 3 for all positive integers.
• P(n):    n3 - n  is divisible by 3

Basis Step: P(1):     13 - 1  =   0   is divisible by 3   (obvious)
Inductive Step: If  P(n) is true then P(n+1) is true for each 

positive integer.
• Suppose  P(n):   n3 - n  is divisible by 3 is true.
• Show P(n+1):  (n+1) 3 - (n+1)  is divisible by 3.

CS 441 Discrete mathematics for CS M. Hauskrecht

Mathematical induction
Example:   Prove n3 - n  is divisible by 3 for all positive integers.
• P(n):    n3 - n  is divisible by 3

Basis Step: P(1):     13 - 1  =   0   is divisible by 3   (obvious)
Inductive Step: If  P(n) is true then P(n+1) is true for each 

positive integer.
• Suppose  P(n):   n3 - n  is divisible by 3 is true.
• Show P(n+1):  (n+1) 3 - (n+1)  is divisible by 3.

(n+1) 3 - (n+1)    =     n3 +  3n2 +  3n  +  1  - n  - 1
=     (n3 - n)  +  3n2 +  3n
=     (n3 - n)  +  3(n 2 +  n)

divisible by 3        divisible by 3
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Strong induction 
• The regular induction:

– uses the basic step P(1) and
– inductive step P(n-1) P(n)

• Strong induction uses:
– Uses the basis step P(1) and
– inductive step  P(1) and P(2) … P(n-1) P(n)

Example: Show that a positive integer greater than 1 can be 
written as a product of primes.
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Strong induction 
Example: Show that a positive integer greater than 1 can be 

written as a product of primes.
Assume P(n): an integer n can be written as a product of primes.
Basis step: P(2) is true
Inductive step: Assume true for P(2),P(3), … P(n)

Show that P(n+1) is true as well.
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Strong induction 
Example: Show that a positive integer greater than 1 can be 

written as a product of primes.
Assume P(n): an integer n can be written as a product of primes.
Basis step: P(2) is true
Inductive step: Assume true for P(2),P(3), … P(n)

Show that P(n+1) is true as well.
2 Cases:
• If n+1 is a prime then P(n+1) is trivially true

CS 441 Discrete mathematics for CS M. Hauskrecht

Strong induction 
Example: Show that a positive integer greater than 1 can be 

written as a product of primes.
Assume P(n): an integer n can be written as a product of primes.
Basis step: P(2) is true
Inductive step: Assume true for P(2),P(3), … P(n)

Show that P(n+1) is true as well.
2 Cases:
• If n+1 is a prime then P(n+1) is trivially true
• If n+1 is a composite then it can be written as a product of two

integers (n+1) = a*b such that  1< a ,b < n+1 
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Strong induction 
Example: Show that a positive integer greater than 1 can be 

written as a product of primes.
Assume P(n): an integer n can be written as a product of primes.
Basis step: P(2) is true
Inductive step: Assume true for P(2),P(3), … P(n)

Show that P(n+1) is true as well.
2 Cases:
• If n+1 is a prime then P(n+1) is trivially true
• If n+1 is a composite then it can be written as a product of two

integers (n+1) = a*b such that  1< a ,b < n+1 
• From the assumption P(a) and P(b) holds. 
• Thus,  n+1 can be written as a product of primes
• End of proof


