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CS 441 Discrete mathematics for CS M. Hauskrecht

CS 441 Discrete Mathematics for CS
Lecture 19

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Summations, Cardinality

CS 441 Discrete mathematics for CS M. Hauskrecht

Course administration

• Homework 5  is due today

• Homework 6 is out
Due on Friday, March 3, 2006 or earlier (TA office)

Course web page:
http://www.cs.pitt.edu/~milos/courses/cs441/
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Arithmetic series
Definition: The sum of the terms of the arithmetic progression

a, a+d,a+2d, …, a+nd is called an arithmetic series. 

Theorem: The sum of the terms of the arithmetic progression
a, a+d,a+2d, …, a+nd is
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Geometric series
Definition: The sum of the terms of a geometric progression a, ar, 

ar2, ..., ark is called a geometric series.

Theorem: The sum of the terms of a geometric progression a, ar, 
ar2, ..., arn is
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Geometric series
Theorem: The sum of the terms of a geometric progression a, ar, 

ar2, ..., arn is

Proof:
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Infinite geometric series

• Infinite geometric series can be computed in the closed 
form for x<1

• How?
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Infinite geometric series
• Infinite geometric series can be computed in the closed form 

for x<1
• How?

• Thus:
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Cardinality
Recall: The cardinality of a finite set is defined by the number of 

elements in the set. 
Definition: The sets A and B have the same cardinality if there is 

a one-to-one correspondence between elements in A and B. In 
other words if there is a bijection from A to B. Recall bijection is 
one-to-one and onto.

Example:  Assume A = {a,b,c} and B = {α,β,γ}
and function f defined as: 

• a → α
• b →β
• c → γ

F defines a bijection. Therefore A and B have the same cardinality, 
i.e. | A | = | B | = 3.
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Cardinality
Definition: A set that is either finite or has the same cardinality as 

the set of positive integers Z+ is called countable. A set that is 
not countable is called uncountable.

Why these are called countable? The elements of the set can be 
enumerated and listed.
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Countable sets
Example:
• Assume A = {0, 2, 4, 6, ... } set of even numbers. Is it 

countable? 
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Countable sets
Example:
• Assume A = {0, 2, 4, 6, ... } set of even numbers. Is it 

countable? 
• Using the definition: Is there a bijective function f: Z+ → A 
Z+ = {1, 2, 3, 4, …}
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Countable sets
Example:
• Assume A = {0, 2, 4, 6, ... } set of even numbers. Is it 

countable? 
• Using the definition: Is there a bijective function f: Z+ → A 
Z+ = {1, 2, 3, 4, …}
• Define a function f:  x → 2x - 2 (an arithmetic progression)

• 1 → 2(1)-2 = 0
• 2 → 2(2)-2 = 2
• 3 → 2(3)-2 = 4      ...
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Countable sets
Example:
• Assume A = {0, 2, 4, 6, ... } set of even numbers. Is it 

countable? 
• Using the definition: Is there a bijective function f: Z+ → A 
Z+ = {1, 2, 3, 4, …}
• Define a function f:  x → 2x - 2 (an arithmetic progression)

• 1 → 2(1)-2 = 0
• 2 → 2(2)-2 = 2
• 3 → 2(3)-2 = 4      ...

• one-to-one (why?) 2x-2 = 2y-2 => 2x = 2y =>x = y.
• onto (why?)   ∀a ∈ A, (a+2) / 2 is the pre-image in Z+.
• Therefore | A | = | Z+ |.
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Cardinality
Theorem: The set of real numbers (R) is an uncountable set.

Proof by a contradiction. 
1) Assume that the real numbers are countable.
2) Then every subset of the reals is countable, in particular, the 

interval from 0 to 1 is countable.  This implies the elements of
this set can be listed say r1, r2, r3, ... where

• r1 = 0.d11d12d13d14 ...
• r2 = 0.d21d22d23d24 ...
• r3 = 0.d31d32d33d34 ......
• where the dij ∈ {0,1,2,3,4,5,6,7,8,9}. 
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Real numbers are uncountable
Proof cont.
3) Want to show that not all reals in the interval between 0 and 1 

are in this list.
• Form a new number called

– r = 0.d1d2d3d4 ... where
2, if dii ≠ 2
3  if dii = 2 

• Example: suppose r1 = 0.75243... d1 = 2
r2 = 0.524310... d2 = 3
r3 = 0.131257... d3 = 2
r4 = 0.9363633... d4 = 2

... ...
rt = 0.23222222... dt = 3

di =
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Real numbers are uncountable
• r = 0.d1d2d3d4 ... where 

2, if dii ≠ 2
3  if dii = 2 

• Claim: r is different than each member in the list. 
• Is each expansion unique?  Yes, if we exclude an infinite string

of 9s.
• _                 _
• Example:   .02850   =   .02849
• Therefore r and ri differ in the i-th decimal place for all i.

di =


