Summations

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Course administration

• Homework 5 is due today

• Homework 6 is out
 Due on Friday, March 3, 2006 or earlier (TA office)

• No class on March 3, 2006

Course web page:
http://www.cs.pitt.edu/~milos/courses/cs441/
Sequences

Definition: A sequence is a function from a subset of the set of integers (typically the set \(\{0, 1, 2, \ldots\} \) or the set \(\{1, 2, 3, \ldots\} \) to a set \(S \). We use the notation \(a_n \) to denote the image of the integer \(n \). We call \(a_n \) a term of the sequence.

Notation: \(\{a_n\} \) is used to represent the sequence (note \{\} is the same notation used for sets, so be careful). \(\{a_n\} \) represents the ordered list \(a_1, a_2, a_3, \ldots \).

\[
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & \ldots \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\
a_1 & a_2 & a_3 & a_4 & a_5 & a_6 & \ldots \\
\{a_n\}
\end{array}
\]

Arithmetic progression

Definition: An arithmetic progression is a sequence of the form \(a, a+d, a+2d, \ldots, a+nd \) where \(a \) is the initial term and \(d \) is common difference, such that both belong to \(\mathbb{R} \).

Example:
- \(s_n = -1 + 4n \)
- members: \(-1, 3, 7, 11, \ldots \)
Geometric progression

Definition A geometric progression is a sequence of the form:

\[a, ar, ar^2, \ldots, ar^k, \]

where \(a \) is the initial term, and \(r \) is the common ratio. Both \(a \) and \(r \) belong to \(\mathbb{R} \).

Example:

- \(a_n = \left(\frac{1}{2} \right)^n \)
 - members: 1, \(\frac{1}{2} \), \(\frac{1}{4} \), \(\frac{1}{8} \), …

Summations

Summation of the terms of a sequence:

\[
\sum_{j=m}^{n} a_j = a_m + a_{m+1} + \ldots + a_n
\]

The variable \(j \) is referred to as the index of summation.

- \(m \) is the lower limit and
- \(n \) is the upper limit of the summation.
Summations

Example:

• 1) Sum the first 7 terms of \(\{n^2\} \) where \(n=1,2,3, \ldots \).

\[
\sum_{j=1}^{7} a_j = \sum_{j=1}^{7} j^2 =
\]

\[
= 1 + 4 + 16 + 25 + 36 + 49 = 140
\]
Summations

Example:

• 1) Sum the first 7 terms of \(\{n^2\} \) where \(n=1,2,3, \ldots \)

\[
\sum_{j=1}^{7} a_j = \sum_{j=1}^{7} j^2 = 1 + 4 + 16 + 25 + 36 + 49 = 140
\]

• 2) What is the value of

\[
\sum_{k=4}^{8} a_j = \sum_{k=4}^{8} (-1)^j =
\]
Arithmetic series

Definition: The sum of the terms of the arithmetic progression \(a, a+d, a+2d, \ldots, a+nd \) is called an arithmetic series.

Theorem: The sum of the terms of the arithmetic progression \(a, a+d, a+2d, \ldots, a+nd \) is

\[
S = \sum_{j=1}^{n} (a + jd) = na + d \sum_{j=1}^{n} j = na + d \frac{n(n+1)}{2}
\]

- Why?

Arithmetic series

Theorem: The sum of the terms of the arithmetic progression \(a, a+d, a+2d, \ldots, a+nd \) is

\[
S = \sum_{j=1}^{n} (a + jd) = \sum_{j=1}^{n} a + \sum_{j=1}^{n} jd = na + d \sum_{j=1}^{n} j
\]

Proof:

\[
S = \sum_{j=1}^{n} (a + jd) = \sum_{j=1}^{n} a + \sum_{j=1}^{n} jd = na + d \sum_{j=1}^{n} j
\]
Arithmetic series

Theorem: The sum of the terms of the arithmetic progression
\(a, a+d, a+2d, \ldots, a+nd \) is
\[
S = \sum_{j=1}^{n} (a + jd) = na + d \sum_{j=1}^{n} j = na + d \frac{n(n+1)}{2}
\]

Proof:
\[
S = \sum_{j=1}^{n} (a + jd) = \sum_{j=1}^{n} a + \sum_{j=1}^{n} jd = na + d \sum_{j=1}^{n} j
\]
\[
\sum_{j=1}^{n} j = 1 + 2 + 3 + 4 + \ldots + (n-2) + (n-1) + n
\]
\[
1 + (n-1) = n
\]
Arithmetic series

Theorem: The sum of the terms of the arithmetic progression $a, a+d, a+2d, \ldots, a+nd$ is

$$S = \sum_{j=1}^{n} (a + jd) = na + d \sum_{j=1}^{n} j = na + d \frac{n(n+1)}{2}$$

Proof:

$$S = \sum_{j=1}^{n} (a + jd) = \sum_{j=1}^{n} a + \sum_{j=1}^{n} jd = na + d \sum_{j=1}^{n} j$$

$$\sum_{j=1}^{n} j = 1 + 2 + 3 + 4 + \ldots + (n-2) + (n-1) + n$$

$$1 + (n-1) = n, \quad n, \quad \ldots, \quad n$$
Arithmetic series

Example:

\[S = \sum_{j=1}^{5} (2 + j3) = \]
Arithmetic series

Example: \(S = \sum_{j=1}^{5} (2 + j3) = \)
\(= \sum_{j=1}^{5} 2 + \sum_{j=1}^{5} j3 = \)
\(= 2 \sum_{j=1}^{5} 1 + 3 \sum_{j=1}^{5} j = \)
\(= 2 \times 5 + 3 \times 10 = \)

\(= 2 \times 5 + 3 \times 10 = \)
Arithmetic series

Example:

\[
S = \sum_{j=1}^{5} (2 + j3) = \\
= \sum_{j=1}^{5} 2 + \sum_{j=1}^{5} j3 = \\
= 2\sum_{j=1}^{5} 1 + 3\sum_{j=1}^{5} j = \\
= 2 \cdot 5 + 3 \sum_{j=1}^{5} j = \\
= 10 + 3 \left(\frac{5+1}{2}\right) \cdot 5 = \\
= 10 + 45 = 55
\]
Arithmetic series

Example 2:

\[S = \sum_{j=3}^{5} (2 + j3) = \]

\[= \left[\sum_{j=1}^{5} (2 + j3) \right] - \left[\sum_{j=1}^{2} (2 + j3) \right] \quad \text{Trick} \]
Arithmetic series

Example 2:

\[
S = \sum_{j=3}^{5} (2 + j3) = \\
= \left[\sum_{j=1}^{5} (2 + j3) \right] - \left[\sum_{j=1}^{2} (2 + j3) \right] \quad \text{Trick}
\]

\[
= \left[2 \sum_{j=1}^{5} 1 + 3 \sum_{j=1}^{5} j \right] - \left[2 \sum_{j=1}^{2} 1 + 3 \sum_{j=1}^{2} j \right]
\]

\[
= 55 - 13 = 42
\]

Double summations

Example:

\[
S = \sum_{i=1}^{4} \sum_{j=1}^{2} (2i - j) =
\]
Double summations

Example: \[S = \sum_{i=1}^{4} \sum_{j=1}^{2} (2i - j) = \]
\[= \sum_{j=1}^{4} \left(\sum_{j=1}^{2} 2i - \sum_{j=1}^{2} j \right) = \]
\[= \sum_{j=1}^{4} 2i \sum_{j=1}^{2} 1 - \sum_{j=1}^{2} j = \]
Double summations

Example: $S = \sum_{i=1}^{4} \sum_{j=1}^{2} (2i - j) =$

$= \sum_{i=1}^{4} \left[\sum_{j=1}^{2} 2i - \sum_{j=1}^{2} j \right] =$

$= \sum_{i=1}^{4} \left[2i \sum_{j=1}^{2} 1 - \sum_{j=1}^{2} j \right] =$

$= \sum_{i=1}^{4} \left[2i \cdot 2 - \sum_{j=1}^{2} j \right] =$

$= \sum_{i=1}^{4} [2i \cdot 2 - 3] =$

$= \sum_{i=1}^{4} [4i - 3] =$
Double summations

Example: \[S = \sum_{i=1}^{4} \sum_{j=1}^{2} (2i - j) = \]
\[= \sum_{i=1}^{4} \left[\sum_{j=1}^{2} 2i - \sum_{j=1}^{2} j \right] = \]
\[= \sum_{i=1}^{4} \left[2i \sum_{j=1}^{2} 1 - \sum_{j=1}^{2} j \right] = \]
\[= \sum_{i=1}^{4} \left[2i \cdot 2 - \sum_{j=1}^{2} j \right] = \]
\[= \sum_{i=1}^{4} [2i \cdot 2 - 3] = \]
\[= \sum_{i=1}^{4} 4i - \sum_{i=1}^{4} 3 = \]
\[= 4 \sum_{i=1}^{4} i - 3 \sum_{i=1}^{4} 1 = \]
\[= 4 \cdot 10 - 3 \cdot 4 = 28 \]
Geometric series

Definition: The sum of the terms of a geometric progression a, ar, ar^2, ..., ar^k is called a geometric series.

Theorem: The sum of the terms of a geometric progression a, ar, ar^2, ..., ar^n is

$$S = \sum_{j=0}^{n} (ar^j) = a \sum_{j=0}^{n} r^j = a \left[\frac{r^{n+1} - 1}{r-1} \right]$$

Proof:

$$S = \sum_{j=0}^{n} ar^j = a + ar + ar^2 + ar^3 + ... + ar^n$$
Geometric series

Theorem: The sum of the terms of a geometric progression a, ar, ar^2, ..., ar^n is

$$S = \sum_{j=0}^{n} (ar^j) = a \sum_{j=0}^{n} r^j = a \left(\frac{r^{n+1} - 1}{r - 1} \right)$$

Proof:

$$S = \sum_{j=0}^{n} ar^j = a + ar + ar^2 + ar^3 + ... + ar^n$$

- multiply S by r

$$rS = r \sum_{j=0}^{n} ar^j = ar + ar^2 + ar^3 + ... + ar^{n+1}$$

- Substract $rS - S = [ar + ar^2 + ar^3 + ... + ar^{n+1}] - [a + ar + ar^2 + ... + ar^n]$
Geometric series

Theorem: The sum of the terms of a geometric progression \(a, ar, ar^2, \ldots, ar^n\) is

\[S = \sum_{j=0}^{n} (ar^j) = a \sum_{j=0}^{n} r^j = a \frac{r^{n+1} - 1}{r - 1} \]

Proof:

\[S = \sum_{j=0}^{n} ar^j = a + ar + ar^2 + ar^3 + \ldots + ar^n \]

- multiply \(S\) by \(r\)

\[rS = r \sum_{j=0}^{n} ar^j = ar + ar^2 + ar^3 + \ldots + ar^{n+1} \]

- Subtract \(rS - S = \left[ar + ar^2 + ar^3 + \ldots + ar^{n+1} \right] - \left[a + ar + ar^2 + \ldots + ar^n \right] = ar^{n+1} - a \)

\[S = \frac{ar^{n+1} - a}{r - 1} = a \frac{r^{n+1} - 1}{r - 1} \]
Geometric series

Example:

\[S = \sum_{j=0}^{n} 2(5)^j = \]

General formula:

\[S = \sum_{j=0}^{n} (ar^j) = a \sum_{j=0}^{n} r^j = a \left(\frac{r^{n+1} - 1}{r - 1} \right) \]

\[S = \sum_{j=0}^{3} 2(5)^j = 2 \cdot \frac{5^4 - 1}{5 - 1} = \]

\[= 2 \cdot \frac{625 - 1}{4} = 2 \cdot 624 = 2 \cdot 156 = 312 \]
Summations

Summation:

\[\sum_{j=m}^{n} a_j = a_m + a_{m+1} + \ldots + a_n \]

The variable \(j \) is referred to as the index of summation.

- \(m \) is the lower limit and
- \(n \) is the upper limit of the summation.

Arithmetic series

Definition: The sum of the terms of the arithmetic progression \(a, a+d, a+2d, \ldots, a+nd \) is called an arithmetic series.

Theorem: The sum of the terms of the arithmetic progression \(a, a+d, a+2d, \ldots, a+nd \) is

\[S = \sum_{j=1}^{n} (a + jd) = na + d \sum_{j=1}^{n} j = na + d \frac{n(n+1)}{2} \]
Arithmetic series

How to calculate:

\[S = \sum_{j=1}^{7} (3 + 5j) = \]

Geometric series

Definition: The sum of the terms of a geometric progression \(a, ar, ar^2, ..., ar^k \) is called a geometric series.

Theorem: The sum of the terms of a geometric progression \(a, ar, ar^2, ..., ar^n \) is

\[
S = \sum_{j=0}^{n} (ar^j) = a \sum_{j=0}^{n} r^j = a \left[\frac{1}{r} - \frac{r^{n+1} - 1}{r - 1} \right]
\]
Geometric series

Theorem: The sum of the terms of a geometric progression \(a, ar, ar^2, ..., ar^n\) is

\[
S = \sum_{j=0}^{n} (ar^j) = a \sum_{j=0}^{n} r^j = a \left[\frac{r^{n+1} - 1}{r - 1} \right]
\]

Proof:

\[
S = \sum_{j=0}^{n} ar^j = a + ar + ar^2 + ar^3 + ... + ar^n
\]

- multiply \(S\) by \(r\)

\[
rS = r \sum_{j=0}^{n} ar^j = ar + ar^2 + ar^3 + ... + ar^{n+1}
\]
Theorem: The sum of the terms of a geometric progression \(a, ar, ar^2, \ldots, ar^n \) is

\[
S = \sum_{j=0}^{n} (ar^j) = a \sum_{j=0}^{n} r^j = a \frac{r^{n+1} - 1}{r - 1}
\]

Proof:

\[
S = \sum_{j=0}^{n} ar^j = a + ar + ar^2 + ar^3 + \ldots + ar^n
\]

- multiply \(S \) by \(r \)
 \[rS = r \sum_{j=0}^{n} ar^j = ar + ar^2 + ar^3 + \ldots + ar^{n+1}\]
- Subtract \(rS - S = [ar + ar^2 + ar^3 + \ldots + ar^{n+1}] - [a + ar + ar^2 + \ldots + ar^n] \)

\[= ar^{n+1} - a\]
Geometric series

Theorem: The sum of the terms of a geometric progression $a, ar, ar^2, \ldots, ar^n$ is

$$S = \sum_{j=0}^{n} (ar^j) = a \sum_{j=0}^{n} r^j = a \left[\frac{r^{n+1} - 1}{r - 1} \right]$$

Proof:

- $S = \sum_{j=0}^{n} ar^j = a + ar + ar^2 + ar^3 + \ldots + ar^n$
- multiply S by r
 $$rS = r \sum_{j=0}^{n} ar^j = ar + ar^2 + ar^3 + \ldots + ar^{n+1}$$
- Subtract $rS - S = [ar + ar^2 + ar^3 + \ldots + ar^{n+1}] - [a + ar^2 + \ldots + ar^n]$
 $$= ar^{n+1} - a$$
 $$S = \frac{ar^{n+1} - a}{r - 1} = a \left[\frac{r^{n+1} - 1}{r - 1} \right]$$

Example:

$$S = \sum_{j=0}^{n} 2(5)^j =$$
Geometric series

Example:

\[S = \sum_{j=0}^{3} 2(5)^j = \]

General formula:

\[S = \sum_{j=0}^{n} (ar^j) = a \sum_{j=0}^{n} r^j = a \left[\frac{r^{n+1} - 1}{r - 1} \right] \]
Infinite geometric series

- Infinite geometric series can be computed in the closed form for $x<1$
 \[S = \sum_{n=0}^{\infty} (x^n) \]

- How?

Thus:

\[
\sum_{n=0}^{\infty} x^n = \lim_{k \to \infty} \sum_{n=0}^{k} x^n = \lim_{k \to \infty} \frac{x^{k+1} - 1}{x - 1} = \frac{1}{x - 1} = \frac{1}{1 - x}
\]

- Thus:

\[
\sum_{n=0}^{\infty} x^n = \frac{1}{1 - x}
\]